
 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 1 of 169

Multicore Communications API

(MCAPI) Specification

V2.015

Document ID: MCAPI API Specification

Document Version: 2.015

Status: Release

Distribution: General

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 2 of 169

Copyright © 2011 The Multicore Association, Inc.

All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission from The Multicore Association, Inc.

All copyright, confidential information, patents, design rights and all other intellectual property rights of
whatsoever nature contained herein are and shall remain the sole and exclusive property of Multicore
Association. The information furnished herein is believed to be accurate and reliable. However, no
responsibility is assumed by The Multicore Association, Inc. for its use, or for any infringements of
patents or other rights of third parties resulting from its use.

The Multicore Association, Inc. name and The Multicore Association, Inc. logo are trademarks or
registered trademarks of The Multicore Association, Inc. All other trademarks are the property of their
respective owners.

The Multicore Association, Inc.

PO Box 4854

El Dorado Hills, CA 95762

530-672-9113

www.multicore-association.org

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 3 of 169

Table of Contents

Preface ... 6

Definitions .. 6
Related Documents ... 7

1. Introduction .. 8

1.1 Overview .. 8
1.2 History .. 9

2. MCAPI Concepts .. 10

2.1 Domains ... 10
2.2 Nodes ... 10
2.3 Endpoints ... 11
2.4 Channels .. 11

2.4.1 Communications ... 11
2.5 Data Delivery .. 12

2.5.1 Data Sending .. 12
2.5.2 Data Routing ... 13
2.5.3 Data Consumption .. 13
2.5.4 Waiting for Non-Blocking Operations ... 14

2.6 Messages ... 14
2.7 Packet Channels .. 15
2.8 Scalar Channels ... 16
2.9 Zero Copy ... 16
2.10 Error Handling Philosophy ... 16
2.11 Buffer Management Philosophy ... 17
2.12 Timeout and Cancellation Philosophy .. 17
2.13 Backpressure Mechanism .. 18
2.14 Implementation Concerns .. 18

2.14.1 Link Management ... 18
2.14.2 Thread-Safe Implementations .. 18

2.15 Potential Future Extensions ... 18
2.15.1 Zero Copy ... 18
2.15.2 Multicast .. 19
2.15.3 Debug, Statistics and Status functions ... 19

2.16 Data Types ... 19
2.16.1 mcapi_domain_t ... 19
2.16.2 mcapi_node_t ... 19
2.16.3 mcapi_port_t ... 19
2.16.4 mcapi_endpoint_t ... 19
2.16.5 mcapi_pktchan_recv_hndl_t ... 20
2.16.6 mcapi_pktchan_send_hndl_t .. 20
2.16.7 mcapi_sclchan_recv_hndl_t ... 20
2.16.8 mcapi_sclchan_send_hndl_t .. 20
2.16.9 Scalar Data Types .. 21
2.16.10 mcapi_request_t ... 21
2.16.11 mcapi_status_t.. 21
2.16.12 mcapi_timeout_t ... 21
2.16.13 Endpoint Attributes ... 21
2.16.14 Other MCAPI Data Types ... 23
2.16.15 Error and Status Codes .. 24
2.16.16 API Parameter Readability ... 25

2.17 What is New in MCAPI 2.015 ... 25
2.17.1 MCAPI to MCA types .. 25
2.17.2 Domains .. 25
2.17.3 Endpoint Attributes ... 25

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 4 of 169

2.17.4 Header Files ... 25
2.17.5 API Consistency ... 28
2.17.6 Definitions and Constants ... 28
2.17.7 Clarifications ... 28

2.18 MCAPI 2.015 to 1.0 Backwards Compatibility ... 28
2.18.1 Affected Functions .. 29

3. MCAPI API ... 30

3.1 Conventions ... 30
3.2 General ... 31

3.2.1 MCAPI_INITIALIZE... 32
3.2.2 MCAPI_FINALIZE... 34
3.2.3 MCAPI_DOMAIN_ID_GET ... 35
3.2.4 MCAPI_NODE_ID_GET ... 36
3.2.5 MCAPI_NODE_INIT_ATTRIBUTES... 37
3.2.6 MCAPI_NODE_SET_ATTRIBUTE ... 38
3.2.7 MCAPI_NODE_GET_ATTRIBUTE .. 39

3.3 Endpoints ... 40
3.3.1 MCAPI_ENDPOINT_CREATE ... 41
3.3.2 MCAPI_ENDPOINT_GET_I ... 43
3.3.3 MCAPI_ENDPOINT_GET .. 44
3.3.4 MCAPI_ENDPOINT_DELETE .. 45
3.3.5 MCAPI_ENDPOINT_GET_ATTRIBUTE .. 46
3.3.6 MCAPI_ENDPOINT_SET_ATTRIBUTE .. 49

3.4 Messages ... 52
3.4.1 MCAPI_MSG_SEND_I ... 53
3.4.2 MCAPI_MSG_SEND .. 55
3.4.3 MCAPI_MSG_RECV_I ... 57
3.4.4 MCAPI_MSG_RECV .. 58
3.4.5 MCAPI_MSG_AVAILABLE ... 59

3.5 Packet Channels .. 60
3.5.1 MCAPI_PKTCHAN _CONNECT_I ... 61
3.5.2 MCAPI_PKTCHAN_RECV_OPEN_I .. 63
3.5.3 MCAPI_PKTCHAN_SEND_OPEN_I .. 65
3.5.4 MCAPI_PKTCHAN_SEND_I .. 67
3.5.5 MCAPI_PKTCHAN_SEND ... 69
3.5.6 MCAPI_PKTCHAN_RECV_I .. 70
3.5.7 MCAPI_PKTCHAN_RECV ... 72
3.5.8 MCAPI_PKTCHAN_AVAILABLE .. 73
3.5.9 MCAPI_PKTCHAN_RELEASE .. 74
3.5.10 MCAPI_PKTCHAN_RELEASE_TEST ... 75
3.5.11 MCAPI_PKTCHAN_RECV_CLOSE_I .. 76
3.5.12 MCAPI_PKTCHAN_SEND_CLOSE_I .. 77

3.6 Scalar Channels ... 78
3.6.1 MCAPI_SCLCHAN_CONNECT_I .. 79
3.6.2 MCAPI_SCLCHAN_RECV_OPEN_I .. 81
3.6.3 MCAPI_SCLCHAN_SEND_OPEN_I .. 83
3.6.4 MCAPI_SCLCHAN_SEND_UINT64 ... 85
3.6.5 MCAPI_SCLCHAN_SEND_UINT32 ... 86
3.6.6 MCAPI_SCLCHAN_SEND_UINT16 ... 87
3.6.7 MCAPI_SCLCHAN_SEND_UINT8 ... 88
3.6.8 MCAPI_SCLCHAN_RECV_UINT64 ... 89
3.6.9 MCAPI_SCLCHAN_RECV_UINT32 ... 90
3.6.10 MCAPI_SCLCHAN_RECV_UINT16 ... 91
3.6.11 MCAPI_SCLCHAN_RECV_UINT8 ... 92
3.6.12 MCAPI_SCLCHAN_AVAILABLE .. 93
3.6.13 MCAPI_SCLCHAN_RECV_CLOSE_I .. 94
3.6.14 MCAPI_SCLCHAN_SEND_CLOSE_I .. 95

3.7 Non-Blocking Operations ... 96
3.7.1 MCAPI_TEST ... 97

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 5 of 169

3.7.2 MCAPI_WAIT ... 99
3.7.3 MCAPI_WAIT_ANY .. 101
3.7.4 MCAPI_CANCEL .. 103

3.8 Support Functions .. 104
3.8.1 MCAPI_DISPLAY_STATUS ... 105

4. FAQ .. 106

5. Use Cases ... 110

5.1 Example Use of Static Naming for Initialization ... 110
5.2 Example Initialization of Dynamic Endpoints ... 110
5.3 Automotive Use Case... 111

5.3.1 Characteristics .. 111
5.3.2 Key Functionality Requirements ... 112
5.3.3 Context and Constraints ... 112
5.3.4 Metrics .. 112
5.3.5 Possible Factorings .. 113
5.3.6 MCAPI Requirements Implications ... 113
5.3.7 Mental Models .. 113
5.3.8 MCAPI Pseudocode ... 116

5.4 Multimedia Processing Use Cases .. 121
5.4.1 Characteristics .. 121
5.4.2 Key Functionality Requirements ... 126
5.4.3 Pseudocode Example ... 127

5.5 Packet Processing .. 132
5.5.1 Packet Processing Code .. 133

6. Appendix A: Acknowledgements ... 139

7. Appendix B: Header Files ... 141

7.1 mca.h ... 141
7.2 mcapi.h .. 143
7.3 mca_impl_spec.h ... 156
7.4 mcapi_impl_spec.h ... 158
7.5 mcapi_v1000_to_v2000.h .. 160
7.6 mcapi_1000_functions.c .. 165

8. Appendix C: MCAPI Specification License Agreement ... 166

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 6 of 169

Preface

This document is intended to assist software developers who are either implementing multicore
communication functions using MCAPI or writing applications that use MCAPI.

Definitions

AMP: Asymmetric multiprocessing, in which two or more processing cores having the same or different
architecture may be running the same or different operating systems (or no OS at all).

API: Application programming interface.

Blocking: A blocking function does not return until the function has completed or resulted in an error. A
blocking API call returns when the buffer may be reused by the application. A thread-suspension
mechanism is required for blocking calls.

Channel: A unidirectional, point-to-point, FIFO connection between a pair of endpoints.

Connection-Based Communication: A method, used in packet and scalar streams, that potentially
removes the message header and route-discovery overhead from each packet or scalar.

Domain: An implementation of MCAPI includes one or more domains, each with one or more nodes.
The concept of domains is used consistently for all Multicore Associations APIs. A domain is
comparable to a subnet in a network.

Endpoint: A destination to which messages may be sent, or to which a communication connection may
be established. It is like a network socket. Each endpoint has a unique identifier that consists of the
tuple {<domain ID>, <node ID>, <port ID>}. A node may have multiple endpoints.

Handle: An abstract reference by one node to an object managed by another node. Unlike a pointer, a
handle does not contain a literal address.

IPC: Inter-processor communication.

MCA: The Multicore Association.

MCAPI: Multicore Communications API Specification, defined by The Multicore Association.

Message: A connectionless datagram sent from one endpoint to another. It is similar to a UDP datagram
in networking.

MRAPI: Multicore Resource API Specification, defined by The Multicore Association.

MTAPI: Multicore Task API Specification, defined by The Multicore Association.

Node: An independent thread of control. It could be a process, thread, instance of an operating system,
hardware accelerator, processor core, or other entity with an independent program counter. Each node
can belong to only one domain. The concept of nodes applies consistently to all Multicore Associations
APIs.

Non-Blocking: A non-blocking function returns in a timely manner (without having to block on any IPC to
any remote nodes), but the requested transaction completes in a non-blocking manner.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 7 of 169

Packet Stream: A FIFO sequence of data packets of variable size, sent from one endpoint to another
after a connection has been established.

POSIX: Portable Operating System Interface, an API for Unix specified by the IEEE.

Scalar Stream: A FIFO sequence of single data words sent from one endpoint to another after a
connection has been established. Each word may contain 8, 16, 32, or 64 bits, but the send and receive
scalar size must be the same.

SMP: Symmetric multiprocessing, in which two or more identical processing cores are connected to a
shared main memory and are controlled by a single OS instance.

SoC: System-on-chip.

Timely: An operation is timely if it returns without having to block on any IPC to any remote nodes.

Related Documents

• Multicore Resource API (MRAPI) Specification, The Multicore Association.

• Multicore Task API (MTAPI) Specification, The Multicore Association (in progress).

• Multicore Programming Practices (MPP), The Multicore Association (in progress)..

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 8 of 169

1. Introduction

1.1 Overview

This Multicore Communications API (MCAPI) specification defines an API and a semantic for
communication and synchronization between processing cores in embedded systems. It does not define
which link management, device model, or wire protocol is used underneath it.

The multiple cores may be homogeneous or heterogeneous and located on a single chip or on multiple
chips in a circuit board. MCAPI is scalable and can support virtually any number of cores, each with a
different processing architecture and each running the same or a different operating system, or no OS
at all. As such, MCAPI is intended to provide source-code compatibility that allows applications to be
ported from one operating environment to another well into the future.

In the most basic MCAPI model, each core is represented as an individual “node” in the system. When a
node needs to communicate with another node, it specifies an endpoint for sending or receiving data.

MCAPI defines three fundamental communications types:

• Messages: Connection-less datagrams, similar to UDP datagrams in networking.

• Packet Channels: Connection-oriented, unidirectional, FIFO packet streams.

• Scalar channel: Connection-oriented, single-word, unidirectional, FIFO scalar streams.

Each of these communications types have their own API calls. Messages are the most flexible form of
communication, and they are useful when senders, receivers, and per-message priorities are
dynamically changing. These are commonly used for synchronization, initialization, and load-balancing.

Packet and scalar channels provide light-weight, socket-like stream communication mechanisms for
senders and receivers with static communication graphs. In a multicore application, MCAPI’s channel
API functions provide an extremely low-overhead, ASIC-like, unidirectional FIFO communications
capability. Channels are typically set up once at initialization, during which the MCAPI runtime system
attempts to perform most of the work involved in communications between a specific pair of endpoints
(such as name lookup, route determination, and buffer allocation). Subsequent sends and receives on
the channel then incur the minimal overhead of physically transferring data. Packet channels support
streaming communication of multiword data buffers. Scalar channels are optimized for sequences of
scalar values. Channel API calls are simple and statically typed, thereby minimizing dynamic software
overhead and allowing applications to access the underlying multicore hardware with extremely low
latency and energy cost.

MCAPI’s objective is to provide a limited number of calls with sufficient communication functionality
while keeping it simple enough to allow efficient implementations. Additional functionality can be layered
on top of the API set. The calls are exemplifying functionality and are not mapped to any particular
existing implementation.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 9 of 169

1.2 History

Although multiprocessor designs have been around for decades, semiconductor vendors have only
recently turned to multicore processors as a solution for the so-called Moore’s Gap1 effect. Modern
multicore CPU design enables CPU performance to track Moore’s law with attractive CPU power-
consumption properties. This trend is causing many system designers, who previously uses single-core
designs, to change to multicore designs in order to meet their performance and/or power-consumption
requirements. This has a huge impact on the software architecture for those systems, which must now
consider inter-processor communication (IPC) issues to pass data between the cores.

The MCAPI specification traces its heritage to communication APIs such as Message Passing Interface
(MPI) and sockets. Both MPI and sockets were targeted primarily toward inter-computer communication,
whereas MCAPI targs inter-core communication in a multicore chip. Accordingly, a principal design goal
of MCAPI was to serve as a low-latency interface, leveraging efficient on-chip interconnect. MCAPI is
thus a light-weight API whose communication latencies and memory footprint are expected to be
significantly lower than that of MPI or sockets. However, because of the more limited scope of multicore
communications and its goal of low latency, MCAPI is less flexible than MPI or sockets.

MCAPI can be distinguished from the Portable Operating System Interface (POSIX) threads, pthreads.
MCAPI is a communications API for messaging and streaming, whereas pthreads is an API for
parallelizing or threading applications. Pthreads offers a programming model that relies on shared
memory for communication and locks for synchronization. In multicore processors with caches, efficient
pthreads implementations require support for cache coherence. Because they lack modularity, lock-
based parallel programs are hard to compose together. MCAPI, in which parallelism is specified using
standard means such as processes or threads, offers an alternative and complementary parallel
programming approach that is modular and composable. MCAPI allows simpler embedded multicore
implementations because it works in multicore processors with private memory or with shared memory.

Inter-Processor Communication (IPC) for device software using multicore processors has some new
requirements beyond those imposed on multiprocessor designs that use discrete processors. Within a
multicore chip, the shorter distance for electrical signals enables data to be passed much more quickly,
energy-efficiently, and reliably than between discrete processors on a board or over a backplane. In
addition, the bandwidth available on chip is orders of magnitude greater. The low latency and high
bandwidth offer the potential of ASIC-like high-speed communication capabilities between cores. This
means that the focus of IPC for multicore processors must prioritize performance in terms of both
latency and throughput. Also, some multicore processors will have many cores that rely on chip-internal
memory or cache to execute code, to avoid the von Neumann bottleneck which multicore processors
can suffer due to the multiple cores contending for external memory accesses. Cores that execute from
chip-internal memory require an IPC implementation that has a small memory footprint. For these
reasons, the two primary goals for a multicore IPC API design, such as MCAPI, are that the
implementation of it can achieve extremely high performance and low memory footprint.

In order for a multicore IPC implementation to achieve high performance and tiny footprint, these two
goals need to be immutable when in conflict with other desirable IPC API attributes, such as flexible
physical or logical connectivity topology, ease of use, OS integration, or compatibility with existing IPC
programming models or APIs.

MCAPI endeavors to meet these goals. Before MCAPI, no IPC API has been designed with these two
immutable goals targeting multicore processors. MCAPI was designed to be sufficiently complete for
many multicore application programming tasks and to serve as a solid foundation for sophisticated
multicore software services. MCAPI can be used to implement distributed services such as name
services and distributed work queues.

1 Moore’s Law has hit a wall where increased transistors per sequential CPU chip is no longer

resulting in a linear increase in performance of that CPU chip.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 10 of 169

2. MCAPI Concepts

The major MCAPI concepts are described in this section. For definitions of terms, see the Preface.

2.1 Domains

An MCAPI domain is comprised of one or more MCAPI nodes in a multicore topology, and it is used for
routing purposes. The scope of a domain is implementation-defined; for example, its scope could be a
single chip with multiple cores or multiple processor chips on a board. The domain ID is specified once
at node initialization. Potential uses for domains include topologies that may change dynamically,
include non-MCAPI sub-topologies, require separation between different transports, or have open and
secure areas.

2.2 Nodes

An MCAPI node is an independent thread of control, such as a process, thread, processor, hardware
accelerator, or instance of an operating system. A given MCAPI implementation specifies what kind of
thing constitutes a node for that implementation.

The intent is not to have a mixture of node definitions in the same implementation (or in different
domains within an implementation). Note that if a node is defined as a thread of execution with its
private address space (like a process), a core with a single unprotected address space OS is equivalent
to a node, whereas a core with a virtual memory OS can host multiple nodes.

The MCAPI standard aims to be implementable on both process-oriented and thread-oriented systems.
MCAPI defines a transport layer between nodes. The MCAPI standard explicitly avoids having any
dependence on a particular shared memory model or process-protection model. The communication
operations defined by MCAPI should be implementable with identical semantics on either thread- or
process- based systems. Thus, programs that use only the MCAPI APIs should be portable between
MCAPI implementations. On the other hand, programs that make use of APIs outside of MCAPI (for
example pthreads) will only be portable between systems that include those extra APIs.

A node ID is specified in the call to mcapi_initialize().

The concept of nodes in MCAPI is shared with other Multicore Association API specifications.
Therefore, implementations that support multiple MCA APIs must define a node in exactly the same
way, and initialization of nodes across these APIs must be consistent. In the future, the Multicore
Association will consider defining a small set of unified API calls and header files that enforce these
semantics.

Things to Remember:

• The MCAPI domain and node numbering plan is established when the MCAPI communication
topology is configured at design-time, so programmers need not worry about this at run-time.

• It is up to the MCAPI implementation to configure communication topology interfaces that enable
communication between nodes in the communication topology.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 11 of 169

2.3 Endpoints

MCAPI endpoints are socket-like communication-termination points. They are created with the
mcapi_endpoint_create() function. A node can have multiple endpoints. Thus, an endpoint is a

topology-global unique identifier. Endpoints are identified by a <domain_id, node_id, port_id>

tuple. An endpoint is created by implicitly referring to the node_ID of the node on which the endpoint is

being created, and explicitly specifying a port_ID. Alternatively, MCAPI allows the creation of an

endpoint by requesting the next available endpoint. Static names allow the programmer to define a
network topology at compile time and to embed the topology in the source code in a straightforward
fashion. It also enables the use of external tools to generate topologies automatically and it facilitates
simple initialization.

It is up to the implementation to ensure that the resulting endpoint reference is unique in the system.
MCAPI allows a reference to endpoints to be obtained by a node other than the node whose node_ID

is associated with the endpoint, using the mcapi_endpoint_get() function. This endpoint reference

can be used as a destination for messages or to specify the opposite end of a connection. Endpoint
references created by requesting the next available endpoint must be passed by the creating node to
other nodes to facilitate communication. Only the creating node is allowed to receive from an endpoint.

Endpoints have a set of attributes. These attributes may be related to Quality of Service (QoS), buffers,
timeouts, etc. Currently MCAPI defines a basic set of attribute numbers and their associated structure or
data type, found in the mcapi.h file. The first 64 endpoint attributes (numbers and data types) are

reserved for the Multicore Association (MCA). Vendors desiring to add vendor-specific endpoint
attributes in their implementations can request, from the MCA, to be assigned ranges of 32 vendor-
specific endpoint attribute numbers. MCAPI defines functions to get and set the attributes of endpoints.
Attributes can only be set on local node endpoints but be gotten from local and remote node endpoints.
It is an error to attempt a connection between endpoints whose attributes are set in an incompatible way
(for now, whether attributes are compatible or not is implementation-defined). It is also an error to
attempt to change the attributes of endpoints that are connected.

2.4 Channels

Channels provide point-to-point FIFO connections between a pair of endpoints. The channels are
unidirectional. There are two types: packet channels and scalar channels. There is no separate channel
object. Instead, channels can be referenced through the endpoints to which they are bound. Since
channels are point-to-point connections between a pair of endpoints, either endpoint can be used to
refer to the channel.

2.4.1 Communications

Applications in an MCAPI topology communicate with one another by sending data between
communication endpoints. Three modes of communication are supported: connectionless messages,
connection-oriented packet channels, or connection-oriented scalar channels. Each communication
action in all three methods requires the specification of a pair of endpoints—a send endpoint and a
receive endpoint—explicitly for messages and implicitly for channels using a handle. Messages and
packet channels provide both blocking and non-blocking send and receive functions. The runtime
system implements each of these logical communication actions over some physical medium that is
supported by MCAPI (such as on-chip interconnect, bus, shared memory, or Ethernet) by automatically
establishing a “link” to enable communication with the other node in the network. The runtime system
also takes care of routing traffic over the appropriate link.

Messages and packet channels communicate using data buffers, whereas scalar channels transfer
scalar values such as four-byte words.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 12 of 169

From an application's perspective, a data buffer to be communicated is a byte string from 0 up to some
maximum length determined by the amount of memory in the system. The internal structure of the data
buffer is determined by the application. The communication byte order is not defined in this specification
because MCAPI is an API specification. Since MCAPI does not currently define a wire protocol (there
may be a future Multicore Association specification which does specify that) then endian-ness and
alignment issues are not relevant to this specification.

Connectionless communication allows an endpoint to send or receive messages with one or more
endpoints elsewhere in the communication topology. A given message can be sent to a single endpoint
(unicast). Multicast and broadcast messaging modes are not supported by MCAPI, but can be built on
top of it.

Connection-oriented communication allows an endpoint to establish a socket-like streaming connection
to a peer endpoint elsewhere in the communication topology, and then send data to that peer. A
connection is established using an explicit handshake mechanism prior to sending or receiving any
application data. After a connection has been established, it remains active for highly efficient data
transfers until it is terminated by one of the sides, or until the communication path between the
endpoints is severed (for example, by the failure of the node or link which one of the endpoints is
utilizing).

Connection-oriented communication over MCAPI channels is designed to be reliable, in that an
application can send data over a connection and assume that the data will be delivered to the specified
destination as long as that destination is reachable.

Things To Remember:

• In an MCAPI communication topology where different nodes may be running on different CPU
types and/or operating systems, applications must ensure that the internal structure of a message
is well-defined, and the applications must account for any differences in message content endian-
ness, field size, and field alignment.

2.5 Data Delivery

On the surface, whether the communications use messages, packet channels, or scalar channels, the
data delivery in MCAPI is a simple series of steps:

• A sender creates and sends the data (either a buffer for messages and packet channels, or a
scalar value for scalar channels).

• The MCAPI implementation carries the data to the specified destination.

• The receiver receives and then consumes the data.

In practice, this is exactly what happens most of the time. However, there are several places along the
way where things can get complicated, and in these cases it is important for application designers to
understand exactly what MCAPI will do. The sections that follow describe the various steps performed
by MCAPI during the transfer of a data packet.

2.5.1 Data Sending

The first step in sending data is to create it. The user application then sends the data using one of
several mechanisms. The application supplies the data in a user buffer for messages and packet
channels. The application supplies the data directly as a scalar variable for scalar channels.

The most common reason MCAPI is unable to send a piece of data is because the sender passes in
one or more invalid arguments to the send routine. The term "invalid" refers both to values that are
never acceptable under any circumstances (such as specifying a data buffer size exceeding the
maximum size allowed for a specific implementation) and to values that are not acceptable for the
current sender (such as an invalid endpoint handle, or an unconnected channel).

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 13 of 169

In all of these cases the send operation will return a failure code indicating that the intended data was
not sent. If the data is sent successfully, the send operation returns a success indication. Success
means that the entire buffer has been sent.

Things to Remember:

• If the sender specifies a destination address for a connectionless message, but the destination
address does not currently exist within the MCAPI communication topology, MCAPI does NOT
treat this as an invalid send request (i.e., it is not the sender's fault that the destination does not
exist). Implementations may, however, treat this as an error condition, and if so the
Implementation must document the specifics. Instead, MCAPI creates the message and then
sends it. The return value for the send operation will indicate success since the message was
successfully created and processed by MCAPI. MCAPI cannot return an error since the
connectivity failure could be occurring elsewhere in the MCAPI communication topology.

2.5.2 Data Routing

After a send of some data has been requested, MCAPI determines what node the data should be sent
to. The endpoint address indicates the destination node to which the packet should be sent. The data is
then either handed off to the destination endpoint directly, if it is on the same node as the sender, or the
data is passed to a link for off-node transmission to the destination node.

One problem that can arise during the routing phase of packet delivery is that no working link to the
specified destination node can be found. In this case, the packet is discarded. Implementations may
optionally report this is an error condition.

2.5.3 Data Consumption

When the data reaches the destination endpoint, it is added to an endpoint receive queue. The data
typically remains in the endpoint's receive queue until it is received by the application that owns the
endpoint. Queued data items are consumed by the application in a FIFO manner for channels, and in a
FIFO order per priority level for messages.

For messages, the user application must supply a buffer into which the MCAPI runtime system fills in
the data. For packet channels, on the other hand, the MCAPI runtime system supplies the buffer
containing the data to the user. For messages, the application can use its data buffer after it is filled by
MCAPI in any way it chooses. Specifically, the application can re-supply the data buffer to MCAPI to
receive the next message. Data buffers supplied by MCAPI during packet channel receives can also be
used by the application in any way it chooses. MCAPI reuses a data buffer it has supplied only after the
user application has specifically freed the buffer using the mcapi_pktchan_release() function.

If an application terminates access to the before all data in the receive queue is consumed, all
unconsumed data items are considered undeliverable and are discarded.

It is very important that MCAPI applications be engineered to consume their incoming data items at a
rate that prevents them from accumulating in large numbers in any endpoint receive queue.

A FIFO model is used for the packet and scalar channel interfaces. FIFOs have limited storage, and
when the storage is used up, an implementation can block until more storage is available or the
implementation can return an error code.

Non-blocking send operations will still return in a timely fashion, but data transfer will not occur if the
FIFO is full. The sender will block upon calling service routines to check for completion of a non-blocking
operation, and will continue to block until a receive operation is performed or a timeout occurs.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 14 of 169

The mcapi_endpoint_get/set attribute() APIs can be used to query or to control the amount

of receive buffering that is provided for a given endpoint. Implementations may define a static receive-
buffer size according to the amount of buffering provided in drivers and/or hardware. Alternatively, an
implementation can be allowed to dynamically allocate storage until the system runs out of memory.

2.5.4 Waiting for Non-Blocking Operations

The connectionless-message and packet-channel API functions have both blocking and non-blocking
variants. The non-blocking variants have “_i” appended to the function name to indicate that the

function will return immediately and will complete in a non-blocking manner.

The non-blocking versions fill in an mcapi_request_t object and return control to the user before the

communication operation is completed. The programmer can then use the mcapi_test(),

mcapi_wait(), and mcapi_wait_any() functions to query the status of the non-blocking operation.

These functions are non-destructive, meaning that no message, packet, or scalar is removed from the
endpoint queue by the functions. The mcapi_test() function is non-blocking, whereas the

mcapi_wait() and mcapi_wait_any() functions will block until the requested operation completes

or a timeout occurs. Multiple threads should not be waiting for the same request; attempting to do so
results in an error.

If a buffer of data is passed to a non-blocking operation (for example, to mcapi_msg_send_i()

mcapi_msg_recv_i(), or to mcapi_pktchan_send_i()), that buffer should not be accessed by the

user application for the duration of the non-blocking operation. That is, after a buffer has been passed to
a non-blocking operation, the program may not read or write the buffer until mcapi_test(),

mcapi_wait(), or mcapi_wait_any() have indicated completion, or until mcapi_cancel()

has canceled the operation.

The MCAPI scalar channels API provides only blocking send and receive methods. Scalar channels are
intended to provide a very low-overhead interface for moving a stream of values. Non-blocking
operations add overhead. The sort of streaming algorithms that take advantage of scalar channels
should not require a non-blocking send or receive method; each process should simply receive a value
to work on, do its work, send the result out on a channel, and repeat. Applications that require non-
blocking semantics should use packet channels instead of scalar channels.

2.6 Messages

MCAPI messages, shown in Figure 1, provide a flexible method to transmit data between endpoints
without first establishing a connection. The buffers on both sender and receiver sides must be provided
by the user application. MCAPI messages may be sent with different priorities, on a per-message basis.
It is not allowed to send a message to a connected endpoint. Implementations may prevent messages
from being sent to a connected endpoint or to leave it up to the application to manage this. Functionality
for this may be added in a future version of MCAPI, and it is therefore recommended that
implementations preventing messages from being sent to a connected endpoint use the
MCAPI_ERR_GENERAL error code to report an error. The implementation-specific behavior should be

documented.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 15 of 169

MCAPI Domain 1

MCAPI Node 1

attributes port 1

endpoint <1,1,1>

attributes port 2

endpoint <1,1,2>

MCAPI Node 2

endpoint <1,2,1>

attributesport 1

Connectionless

Message to <1,2,1>

Messages: Connectionless

- More flexible, less configuration

- Blocking and non-blocking

- Prioritized messages

Connectionless Has More Flexibility

Figure 1. Connectionless Messages

2.7 Packet Channels

MCAPI packet channels, shown in Figure 2, provide a method to transmit data between endpoints by
first establishing a connection, thus potentially removing or reducing the message-header and route-
discovery overhead for subsequent data transmission. Packet channels are unidirectional and deliver
data in a FIFO manner. The buffers are provided by the MCAPI implementation on the receive side, and
by the user application on the send side. Packet channels provide per-endpoint priority. It is not allowed
to send a message to a connected endpoint.

Scalar Channel

MCAPI Domain 1

MCAPI Node 4

attributes port 2

endpoint <1,4,1>

MCAPI Node 1

attributes port 1

endpoint <1,1,1>

attributes port 2

endpoint <1,1,2>

endpoint <1,3,2>

MCAPI Node 3

endpoint <1,3,1>

attributesport 1

attributesport 2

Packet Channel

Packets and Scalars: Connected

- More efficient, more configuration

- Blocking and non-blocking packets

- Blocking scalars

Connected Is More Efficient

Figure 2. Connected Channels

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 16 of 169

2.8 Scalar Channels

MCAPI scalar channels, shown in Figure 2, provide a method to transmit scalars very efficiently
between endpoints by first establishing a connection. Like packet channels, scalar channels are
unidirectional and deliver data in a FIFO manner. The scalar functions come in 8-bit, 16-bit, 32-bit and
64-bit variants. The scalar receives must be of the same size as the scalar sends. A mismatch in size
results in an error. Scalar channels provide per-endpoint priority.

2.9 Zero Copy

Zero copy means that data is passed by reference instead of physical copy. This method is useful when
multiple cores have shared memory, because one core can operate on a buffer of data and simply pass
a pointer to the buffer to the next core, thereby saving the time and energy of moving the data
physically. Zero copy requires specific buffer management and is intended to be orthogonal to other API
operations, to avoid complexity (simplifying code migration) and performance penalties for non-zero
copy operations. With the addition of the mcapi_pktchan_release_test() function (Version 1.1)

MCAPI is capable of supporting zero copy directly through the API functions, if shared memory and
support in the underlying implementation is available. The application is responsible for allocation of
shared memory.

2.10 Error Handling Philosophy

Error handling is a fundamental part of the specification. However, some accommodations have been
made to allow for trading-off completeness for efficiency of implementation. For example, a few API
functions allow implementations to optionally handle errors2. Consistent and efficient coding styles also
govern the design of the error handling. In general, function calls include an error-code parameter used
by the API function to indicate detailed status. In addition, the return value of several API functions
indicates success or failure which enables efficient coding practice. A value of type, mcapi_status_t,

indicates success or failure states of API calls. MCAPI_NULL is a valid return value for

mcapi_status_t (it can be used for implementation optimization) and implementations should state

when this is the case.

If a process or thread attached to a node fails, it is generally up to the application to recover from this
failure. MCAPI provides timeouts, as endpoint attributes as well as for the mcapi_wait() and

mcapi_wait_any() functions, and MCAPI also provides the mcapi_cancel() function to clear

outstanding non-blocking requests at the non-failing side of the communication. It is also possible to
reinitialize a failed node by first calling mcapi_finalize().

2 The mcapi_sclchan_unit_send_* and mcapi_sclchan_uint_recv_* routines define error

arguments, but implementation are free to assume the routines always succeed. The message and
packet channel send and receive functions can optionally report transmission errors.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 17 of 169

2.11 Buffer Management Philosophy

MCAPI provides two methods for transferring buffers of data between endpoints: MCAPI messages and
MCAPI packet channels. Both methods allow the programmer to send a buffer of data on one node and
receive it on another node. The methods differ in that messaging is connectionless, allowing any node
to communicate with any other node at any time, with priority. Packet channels, on the other hand,
perform repeated communication via a connection between two endpoints.

The APIs for sending a buffer via messaging or packet channels are very similar. Both APIs have a
send method that allows the programmer to specify a buffer of data with two parameters: (void*,

size_t). The programmer may send any data buffer they choose. There is no requirement that the

buffer be allocated by MCAPI or returned to MCAPI after the send call completes.

The messaging and packet-channel APIs differ in their handling of received buffers. The messaging API
provides a “user-specified buffer” communications interface–the programmer specifies an empty buffer
to be filled with incoming data on the receive side. The programmer can specify any buffer they choose
and there is no requirement to allocate or release the buffer via an MCAPI call.

On the other hand, packet channels provide a “system-specified buffer” interface–the receive method
returns a buffer of data at an address chosen by the runtime system. Since the receive buffer for a
packet channel is allocated by the system, the programmer must return the buffer to the system by
calling mcapi_pktchan_release().

MCAPI data buffers may have arbitrary alignment. However, MCAPI defines two macros to help provide
buffer alignment in performance-critical cases. Use of these macros is optional and can be defined with
no value (“no-op”); implementers are required to handle send and receive buffers of arbitrary alignment,
but can optimize for aligned buffers.

MCAPI implementations define the following two macros:

1. MCAPI_DECL_ALIGNED : a macro placed on static declarations in order to force the compiler to

make the declared object aligned. For example:

mcapi_int_t MCAPI_DECL_ALIGNED my_int_to_send; /* See mcapi.h */

2. MCAPI_BUF_ALIGN : a macro that evaluates to the number of bytes to which dynamically

allocated buffers should be aligned. For example:

memalign(MCAPI_BUF_ALIGN, sizeof(my_message));

MCAPI does not provide for any maximum buffer size. Applications may use any message size they
choose, but implementations may specify a maximum buffer size and may fail with
MCAPI_ERR_MEM_LIMIT if the system runs out of allocatable memory. Thus, the maximum size of a

message in any particular implementation is limited by an implementation-specified size or the amount
of system memory available to that implementation.

2.12 Timeout and Cancellation Philosophy

The MCAPI API provides timeout functionality for its non-blocking calls through the timeout parameters
of the mcapi_wait() and mcapi_wait_any() functions. For blocking functions, implementations

can optionally provide timeout capability by using endpoint attributes.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 18 of 169

2.13 Backpressure Mechanism

In many systems, the sender and receiver must coordinate to ensure that the messages are handled
without overwhelming the receiver. Without such coordination, the sender must implement elaborate
recovery mechanisms in case a message is dropped by the receiver. The overhead to handle these
error cases is higher than pausing for some time and continuing later. The sender handles such
scenarios by inquiring about the receiver status before sending a message. The receiver returns the
status based on the number of available buffers or buffer size.

The sender throttles the messages using the mcapi_endpoint_attribute_get() API and the

MCAPI_ATTR_NUM_RECV_BUFFERS_AVAILABLE attribute. If required, the sender and receiver can

reserve some buffers for higher-priority messages. A more sophisticated mechanism can be build on top
of this API. For example, zones (green, yellow and red) can be defined using the number of available
messages. The sender can use the zones to throttle the messages.

2.14 Implementation Concerns

2.14.1 Link Management

The processes for link configuration and link management are not specified by MCAPI. MCAPI does not
define APIs or services (such as membership services) related to dynamic link-state detection, node or
service discovery, and node- or service-state management. This is because MCAPI is designed to
address multicore and multiprocessor systems in which the number of nodes and their connectivity
topology is known when the MCAPI system is configured. Since the MCAPI specification does not
specify any APIs that deal with network interfaces, an MCAPI implementation is free to manage links
underneath the interface as it sees fit. In particular, an MCAPI implementation can restrict the topologies
supported or the number of links between nodes in an MCAPI communication topology.

2.14.2 Thread-Safe Implementations

MCAPI implementations are assumed to be reentrant (thread-safe). If an MCAPI implementation is
available in a threaded environment, then it needs to be thread-safe. MCAPI implementations can also
be available in non-threaded environments, but the provider of such implementations needs to clearly
indicate that the implementation is not thread-safe.

2.15 Potential Future Extensions

With the goals of implementing MCAPI efficiently, the APIs are kept simple with potential for adding
more functionality on top of MCAPI later. Some specific areas include additional zero copy functionality,
multicast, and informational functions for debugging, statistics (optimization), and status. These areas
are strong candidates for future extensions, and they are briefly described in the following subsections.

2.15.1 Zero Copy

As mentioned above in Section 2.9, zero copy can be very useful for systems in which multiple nodes
share memory. Zero-copy buffer management can be implemented relatively simply on top of MCAPI,
and this is something to consider for future versions of MCAPI.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 19 of 169

2.15.2 Multicast

MCAPI currently supports point-to-point communication. Communication with one sender and multiple
receivers, often referred to as multi-cast, can be layered on top of MCAPI. For transports with hardware
support for one-to-multiple communication, specific API functions supporting this type of communication
would allow for more efficient implementations than is possible through layering.

2.15.3 Debug, Statistics and Status functions

Support functions providing information for debugging, optimization, and system status are useful in
most systems. This would be a valuable addition to MCAPI, and is also worth future consideration.

2.16 Data Types

MCAPI uses predefined data types for maximum portability. The predefined MCAPI data types are
defined in the following subsections. To simplify the use of multiple Multicore Association (MCA) APIs,
some MCAPI data types have MCA equivalents and some MCAPI functions will have MCA-equivalent
functions that can be used for multiple MCA APIs. An MCAPI implementation is not required to provide
MCA-equivalent functions.

2.16.1 mcapi_domain_t

The mcapi_domain_t type is used for MCAPI domains. The domain ID scheme is implementation-

defined. For application portability, we recommend using symbolic constants in your code. The
mcapi_domain_t has an mca_domain_t equivalent.

2.16.2 mcapi_node_t

The mcapi_node_t type is used for MCAPI nodes. The node numbering is implementation-defined.

For application portability, we recommend using symbolic constants in your code. The mcapi_node_t
has an mca_node_t equivalent.

2.16.3 mcapi_port_t

The mcapi_port_t type is used for MCAPI ports. The port numbering is implementation-defined. For

application portability, we recommend using symbolic constants in your code.

2.16.4 mcapi_endpoint_t

The mcapi_endpoint_t type is used for creating and managing endpoints for sending and receiving

data. MCAPI routines for creating and managing endpoints are described in Section 3.3, packet channel
creation is covered in Section 3.5.1, and scalar channel creation is covered in Section 3.6.1. The
mcapi_endpoint_t type is an opaque data type whose exact definition is implementation-defined.

The endpoint identifier is globally unique to an MCAPI topology.

NOTE: Do not attempt to examine the contents of this data type, as this can result in non-portable
application code.

Implementation advice: The endpoint type must provide for topology-global uniqueness, be returnable
by a function, be passable as a parameter to a function, and should allow simple arithmetic equality
comparison (a == b) such as a 32- bit scalar or pointer.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 20 of 169

2.16.5 mcapi_pktchan_recv_hndl_t

The mcapi_pktchan_recv_hndl_t type is used to receive packets from a connected packet

channel. MCAPI routines for creating and using the mcapi_pktchan_recv_hndl_t type are covered

in Section 3.5. The mcapi_pktchan_recv_hndl_t is an opaque data type whose exact definition is

implementation-defined.

NOTE: Do not attempt to examine the contents of this data type, as this can result in non-portable
application code.

Implementation advice: The handle must be passable as a parameter to a function and should allow
simple arithmetic equality comparison (a == b) such as a 32- bit scalar or pointer.

2.16.6 mcapi_pktchan_send_hndl_t

The mcapi_pktchan_send_hndl_t type is used to send packets to a connected packet channel.

MCAPI routines for creating and using the mcapi_pktchan_send_hndl_t type are covered in

Section 3.5. The mcapi_pktchan_send_hndl_t is an opaque data type whose exact definition is

implementation-defined.

NOTE: Do not attempt to examine the contents of this data type, as this can result in non-portable
application code.

Implementation advice: The handle must be passable as a parameter to a function and should allow
simple arithmetic equality comparison (a == b), such as a 32- bit scalar or pointer.

2.16.7 mcapi_sclchan_recv_hndl_t

The mcapi_sclchan_recv_hndl_t type is used to receive scalars from a connected scalar channel.

MCAPI routines for creating and using the mcapi_sclchan_recv_hndl_t type are covered in

Section 3.6. The mcapi_sclchan_recv_hndl_t is an opaque data type whose exact definition is

implementation-defined.

NOTE: Do not attempt to examine the contents of this data type, as this can result in non-portable
application code.

Implementation advice: The handle must be passable as a parameter to a function and should allow
simple arithmetic equality comparison (a == b), such as a 32- bit scalar or pointer.

2.16.8 mcapi_sclchan_send_hndl_t

The mcapi_sclchan_send_hndl_t type is used to send scalars to a connected scalar channel.

MCAPI routines for creating and using the mcapi_sclchan_send_hndl_t type are covered in

Section 3.6. The mcapi_sclchan_send_hndl_t is an opaque data type whose exact definition is

implementation-defined.

NOTE: Do not attempt to examine the contents of this data type, as this can result in non-portable
application code.

Implementation advice: The handle must be passable as a parameter to a function and should allow
simple arithmetic equality comparison (a == b), such as a 32-bit scalar or pointer.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 21 of 169

2.16.9 Scalar Data Types

The following scalar types are used for signed and unsigned 64-, 32-, 16-, and 8-bit scalars:

• mcapi_uint64_t

• mcapi_uint32_t

• mcapi_uint16_t

• mcapi_uint8_t

2.16.10 mcapi_request_t

The mcapi_request_t type is used to record the state of a pending non-blocking MCAPI transaction

(see Section 2.5.4). Non-blocking MCAPI routines exist for message send and receive (see Section 3.4)
and packet send and receive (see Section 3.5). The MCAPI request can only be used by the node it
was created on. The mcapi_request_t has an mca_request_t equivalent.

NOTE: Do not attempt to examine the contents of this data type, as this can result in non-portable
application code.

Implementation advice: The request should allow simple arithmetic equality comparison (a == b), such
as a 32-bit scalar or pointer.

2.16.11 mcapi_status_t

The mcapi_status_t type is an enumerated type used to record the result of an MCAPI API call. If a

status can be returned by an API call, the associated MCAPI API call will allow a mcapi_status_t to

be passed by reference. The API call will fill in the status code and the API user may examine the
mcapi_status_t variable to determine the result of the call. The function return values are valid only

when mcapi_status returns MCAPI_SUCCESS. The mcapi_status_t has an mca_status_t

equivalent.

2.16.12 mcapi_timeout_t

The mcapi_timeout_t type is an unsigned scalar type used to indicate the duration that an

mcapi_wait() or mcapi_wait_any() API call will block before reporting a timeout. The units of the

mcapi_timeout_t data type are implementation-defined because mechanisms for time keeping vary

from system to system. Applications should not rely on this feature for satisfaction of real-time
constraints because its use will not guarantee application portability across MCAPI implementations.

The mcapi_timeout_t data type is intended primarily to allow for error detection and recovery, and an

application developer must take appropriate action if it is used for any other purpose. The
mcapi_timeout_t has an mca_timeout_t equivalent. A value of MCAPI_TIMEOUT_IMMEDIATE

(0) for the timeout parameter indicates that the function will return without blocking, indicating failure or

success; a value of MCAPI_INFINITE (~0) for the timeout parameter indicates no timeout is

requested, i.e. the function will block until it is unblocked because of failure or success.

2.16.13 Endpoint Attributes

MCAPI endpoint attributes provide access to endpoint characteristics, and state. See the header files
for detailed information. Implementations may designate endpoint attributes as read-only. Some
endpoint attributes have to be compatible for a successful channel, as noted below.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 22 of 169

2.16.13.1 mcapi_endp_attr_max_payload_size_t

This attribute defines the maximum payload size. This is a channel compatibility attribute; a channel
connection requires that this attribute value is the same for both channel endpoints. Default value is
implementation-defined.

2.16.13.2 mcapi_endp_attr_buffer_type_t

This attribute defines the endpoint buffer type, at the present only FIFO type exists. It means that the
order of transmission is FIFO for channels and FIFO per priority level for messages. This is a channel
compatibility attribute, meaning that a channel connection requires that this attribute value is the same
for both channel endpoints. Default value is implementation-defined.

Buffer types: MCAPI_ENDP_ATTR_FIFO_BUFFER Default

2.16.13.3 mcapi_endp_attr_memory_type_t

This attribute defines the memory's locality, whether local, shared, or remote. This is a channel

compatibility attribute, meaning that a channel connection requires that this attribute value is the same
for both channel endpoints.

Memory locality:

 MCAPI_ENDP_ATTR_LOCAL_MEMORY Default
 MCAPI_ENDP_ATTR_SHARED_MEMORY

 MCAPI_ENDP_ATTR_REMOTE_MEMORY

2.16.13.4 mcapi_endp_attr_num_priorities_t

This attribute defines the number of endpoint priorities. This is a channel compatibility attribute, meaning
that a channel connection requires that this attribute value is the same for both channel endpoints.
Default value is implementation-defined.

2.16.13.5 mcapi_endp_attr_priority_t

This attribute defines the endpoint priority, applied to a channel at the time the channel is connected.
This is a channel compatibility attribute, meaning that a channel connection requires that this attribute
value is the same for both channel endpoints. A lower number means higher priority. A value of
MCAPI_MAX_PRORITY (0) denotes the highest priority.

2.16.13.6 mcapi_endp_attr_num_send_buffers_t

This attribute contains the number of send buffers at the current endpoint priority level. Default value is
implementation-defined.

2.16.13.7 mcapi_endp_attr_num_recv_buffers_t

This attribute contains the number of receive buffers available. This can, for example, be used for
throttling. Implementation-defined default value.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 23 of 169

2.16.13.8 mcapi_endp_attr_status_t

This attribute contains endpoint status flags. Flags are used to query the status of an endpoint, e.g. if it
is connected, and if so what type of channel, direction, etc.

Note: The lower 16 bits are defined in mcapi.h whereas the upper 16 bits are reserved for

implementation-specific purposes and, if used, must be defined in implementation_spec.h. It is

therefore recommended that the upper 16 bits be masked off at the application level.

 0x00000000

 ---- mcapi.h

 ---- implementation_spec.h

Default = 0x00000000

Standard status flags:

MCAPI_ENDP_ATTR_STATUS_CONNECTED /* The endpoint is one end of a

connected channel*/

MCAPI_ENDP_ATTR_STATUS_OPEN /* A channels is open on this

endpoint*/

MCAPI_ENDP_ATTR_STATUS_OPEN_PENDING /* A channel open is pending */

MCAPI_ENDP_ATTR_STATUS_CLOSE_PENDING /* A channel close is pending */

MCAPI_ENDP_ATTR_STATUS_PKTCHAN /* Packet channel */

MCAPI_ENDP_ATTR_STATUS_SCLCHAN /* Scalar channel */

MCAPI_ENDP_ATTR_STATUS_SEND /* Send side */

MCAPI_ENDP_ATTR_STATUS_RECEIVE /* Receive side */

2.16.13.9 mcapi_endp_attr_timeout_t

This attribute contains the timeout value for blocking send and receive functions. A value of
MCAPI_TIMEOUT_IMMEDIATE (or 0) means that the function will return "immediately", with success or

failure. MCAPI_TIMEOUT_INFINITE means that the function will block until it completes with success

or failure. Default = MCAPI_TIMEOUT_INFINITE.

2.16.14 Other MCAPI Data Types

MCAPI also defines its own integer, Boolean and other types, some of which have MCA equivalents.
See the header files on page 141 of this document for specifics on these data types.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 24 of 169

2.16.15 Error and Status Codes

Status code Description

MCAPI_SUCCESS Indicates operation was successful

MCAPI_PENDING Indicates operation is pending without errors

MCAPI_TIMEOUT The operation timed out

MCAPI_ERR_PARAMETER Incorrect parameter

MCAPI_ERR_DOMAIN_INVALID The parameter is not a valid domain

MCAPI_ERR_NODE_INVALID The parameter is not a valid node

MCAPI_ERR_NODE_INITFAILED The MCAPI node could not be initialized

MCAPI_ERR_NODE_INITIALIZED MCAPI node is already initialized

MCAPI_ERR_NODE_NOTINIT The MCAPI node is not initialized

MCAPI_ERR_NODE_FINALFAILED The MCAPI could not be finalized

MCAPI_ERR_PORT_INVALID The parameter is not a valid port

MCAPI_ERR_ENDP_INVALID The parameter is not a valid endpoint descriptor

MCAPI_ERR_ENDP_EXISTS The endpoint is already created

MCAPI_ERR_ENDP_GET_LIMIT The endpoint get reference count is too high

MCAPI_ERR_ENDP_NOTOWNER An endpoint can only be deleted by its creator

MCAPI_ERR_ENDP_REMOTE

Certain operations are only allowed on the node local
endpoints

MCAPI_ERR_ATTR_INCOMPATIBLE

Connection of endpoints with incompatible attributes not
allowed

MCAPI_ERR_ATTR_SIZE Incorrect attribute size

MCAPI_ERR_ATTR_NUM Incorrect attribute number

MCAPI_ERR_ATTR_VALUE Incorrect attribute vale

MCAPI_ERR_ATTR_NOTSUPPORTED Attribute not supported by the implementation

MCAPI_ERR_ATTR_READONLY Attribute is read-only

MCAPI_ERR_MSG_SIZE

The message size exceeds the maximum size allowed by the
MCAPI implementation

MCAPI_ERR_MSG_TRUNCATED The message size exceeds the buffer size

MCAPI_ERR_CHAN_OPEN A channel is open, certain operations are not allowed

MCAPI_ERR_CHAN_TYPE

Attempt to open a packet/scalar channel on an endpoint that
has been connected with a different channel type

MCAPI_ERR_CHAN_DIRECTION

Attempt to open a send handle on a port that was connected
as a receiver, or vice versa

MCAPI_ERR_CHAN_CONNECTED

A channel connection has already been established for one or
both of the specified endpoints

MCAPI_ERR_CHAN_OPENPENDING An open request is pending

MCAPI_ERR_CHAN_CLOSEPENDING A close request is pending.

MCAPI_ERR_CHAN_NOTOPEN The channel is not open (cannot be closed)

MCAPI_ERR_CHAN_INVALID Argument is not a channel handle

MCAPI_ERR_PKT_SIZE

The packet size exceeds the maximum size allowed by the
MCAPI implementation

MCAPI_ERR_TRANSMISSION Transmission failure

MCAPI_ERR_PRIORITY Incorrect priority level

MCAPI_ERR_BUF_INVALID Not a valid buffer descriptor

MCAPI_ERR_MEM_LIMIT Out of memory

MCAPI_ERR_REQUEST_INVALID Argument is not a valid request handle

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 25 of 169

Status code Description

MCAPI_ERR_REQUEST_LIMIT Out of request handles

MCAPI_ERR_REQUEST_CANCELLED The request was already canceled

MCAPI_ERR_WAIT_PENDING A wait is pending

MCAPI_ERR_GENERAL

To be used by implementations for error conditions not covered
by the other status codes

MCAPI_STATUSCODE_END This should always be last

2.16.16 API Parameter Readability

MCAPI_IN and MCAPI_OUT are used only for clarity to distinguish between input and output

parameters.

2.17 What is New in MCAPI 2.015

The changes from Version 1.0 to Version 2.000 are in the areas of improved API consistency, bug fixes,
enhancements, and added functionality, as described below.

MCAPI Version 2.015 is functionally identical to MCAPI Version 2.000. The only differences are
clarifications and grammatical improvements in the text.

2.17.1 MCAPI to MCA types

Some MCAPI data types and definitions were promoted to MCA data types and definitions to simplify
interoperability between MCAPI and other MCA standards and to allow implementations to provide MCA
versions of some functions that could be used for multiple MCA standards. For this purpose, an mca.h

header file was added.

2.17.2 Domains

An MCAPI domain is comprised of one or more MCAPI nodes in a multicore topology and used for
routing purposes. The scope of a domain is implementation-defined and its scope could, for example,
be a single chip with multiple cores or multiple processor chips on a board. The domain ID is specified
once at node initialization. A domain can contain multiple nodes. Some example uses for domains are
topologies that may change dynamically, topologies that include non-MCAPI sub-topologies, and
topologies that require separation between different transports or have open and secure areas.

2.17.3 Endpoint Attributes

A few attributes were added. For details see the ATTRIBUTES subsections in Section 3.3. The first 64
endpoint attributes (numbers and data types) are reserved for the Multicore Association (MCA). Vendors
desiring to add vendor-specific endpoint attributes in their implementations can request, from the MCA,
to be assigned ranges of 32 vendor-specific endpoint attribute numbers. Attribute ranges are defined in
mca.h.

2.17.4 Header Files

The header files have been restructured to better separate standard and implementation-specific
definitions.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 26 of 169

2.17.4.1 New Functionality and Functions

2.17.4.2 Parameter types

The parameters mcapi_port_t and mcapi_timeout_t (= mca_tiemout_t) were changed from

int to unsigned int, to provide a longer range of meaningful values.

2.17.4.3 Initialization Parameters and Information

Initialization parameters were added to allow implementations to configure the MCAPI at runtime. A
parameter was also added to allow implementations to provide information about the MCAPI runtime
with both MCAPI-specified and implementation-specific information. For specifics on MCAPI
information, see below. The topology information can, for example, be used for basic initial system
discovery by using the number_of_domains and number_of_nodes parameters to establish

communications for more thorough discovery.

2.17.4.3.1 mcapi_node_attributes_t

Node initialization parameters defined by MCAPI.

MCAPI -defined node attributes:

MCAPI_NODE_ATTR_TYPE_REGULAR The node is regular. Default.

2.17.4.3.2 mcapi_param_t

Initialization parameters will vary by implementation, and may include specification of the amount of
resources to be used for a specific implementation or configuration, such as the maximum number of
outstanding requests. This means that each implementation must provide documentation and/or sample
code for the initialization. Some initialization parameters may be standardized in future versions of
MCAPI.

2.17.4.3.3 mcapi_info_t

The informational parameters include MCAPI-specified information as outlined below, as well as
implementation-specific information. Implementation-specific information must be documented by the
implementer.

MCAPI-defined initialization information:

mcapi_version MCAPI version, the three last (rightmost) hex digits are the minor

number, and those left of the minor number are the major number.

organization_id Implementation vendor or organization ID. Assigned by MCA.

implementation_version Implementation version, represented by a 32-bit scalar. The specific

format is implementation-defined.

number_of_domains Number of domains in the topology.

number_of_nodes Number of nodes in the domain. This can be used for basic per-domain

topology discovery. Note: This information may not be available in all
implementations. The functionality must be documented.

number_of_ports Number of available ports on the local node.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 27 of 169

2.17.4.4 MCAPI_domains

An MCAPI domain is comprised of one or more MCAPI nodes in a multicore topology and used for
routing purposes. The scope of a domain is implementation-defined and could, for example, be a single
chip with multiple cores or multiple processor chips on a board. The domain ID is specified once at node
initialization. A domain can contain multiple nodes. Some example uses for domains are topologies that
may change dynamically, topologies that include non-MCAPI sub-topologies, or topologies that have
open and secure areas.

2.17.4.5 mcapi_domain_id_get()

This function was added to allow the application to find its MCAPI domain ID. Other functions affected
are: mcapi_initialize(), mcapi_endpoint_get_i() and mcapi_endpoint_get().

2.17.4.6 mcapi_node_id_get()

The return value was changed from mcapi_uint_t to mcapi_node_t for mca data type alignment
purposes.

2.17.4.7 mcapi_endpoint_get() Functionality

To avoid the potential for blocking indefinitely on this function, a timeout parameter was added.

2.17.4.8 mcapi_node_init_attribute()

This function was added to allow initialization of a node's attribute structure for setting non-default node
attributes to be used by mcapi_initialize().

2.17.4.9 mcapi_node_set_attribute()

This function was added to allow setting non-default node attributes to be used by
mcapi_initialize().

2.17.4.10 mcapi_node_get_attribute()

This function was added to allow the application to query other nodes about their attributes, e.g. type of
node, characteristics, etc. This functionality takes basic topology discovery a step further and simplifies
applying MCAPI to a multitude of diverse multicore platforms.

2.17.4.11 mcapi_pktchan_release_test()

This function was added to allow the sender side of a packet channel to find out if a buffer has been
released by the receiver for reuse. This may, for example, be useful for zero copy operations.

2.17.4.12 mcapi_wait()

The order of the timeout and mcapi_status parameters was changed for consistency.

2.17.4.13 mcapi_wait_any()

The order of the timeout and mcapi_status parameters was changed for consistency. The
mcapi_request_t** paramater was change to to mcapi_request_t*, to simplify usage. The return value
was changed return from mcapi_int_t to mcapi_uint_t, as a negative value is not meaningful in the
context of this function.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 28 of 169

2.17.4.14 mcapi_display_status()

This function was added to enable displaying an MCAPI status code in text format, for convenience.

2.17.5 API Consistency

2.17.5.1 API Function Names

Some API function names were modified to adhere to a consistent nomenclature. The nomenclature is
mcapi_<functional area>_<action>, e.g. mcapi_msg_send().

The following functions were name changed:

• mcapi_node_id_get()

• mcapi_endpoint_create()

• mcapi_endpoint_delete()

• mcapi_endpoint_get_i()

• mcapi_endpoint_get()

• mcapi_endpoint_get_attribute()

• mcapi_endpoint_set_attribute()

• mcapi_pktchan_connect_i()

• mcapi_pktchan_recv_open_i()

• mcapi_pktchan_send_open_i()

• mcapi_pktchan_release()

• mcapi_pktchan_recv_close_i()

• mcapi_pktchan_send_close_i()

• mcapi_sclchan_connect_i()

• mcapi_sclchan_recv_open_i()

• mcapi_sclchan_send_open_i()

2.17.5.2 Error and Status Codes

Error and status codes were modified for consistency, and others were added to allow for more precise
error and status reporting.

2.17.6 Definitions and Constants

Some definitions and constants have been more clearly defined and specified.

2.17.7 Clarifications

Clarifications were added throughout the document to improve the understanding of the MCAPI
specification.

2.18 MCAPI 2.015 to 1.0 Backwards Compatibility

To address backwards compatibility as much as possible, a new header file
mcapi_v1000_to_v2000.h and a compatibility function were added. A few notes on the backwards

compatibility follow.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 29 of 169

2.18.1 Affected Functions

2.18.1.1 mcapi_initialize()

The mcapi_initialize() function has the additional parameters domain_id,

mcapi_node_attributes, and init_parameters and modified mcapi_info parameter. An

mcapi_1000_intitialize() function is added in the header file showing how to map to the v 2.000

mcapi_initialize() function. MCAPI 1.0 nodes will always be in domain 0.

2.18.1.2 mcapi_endpoint_get_i() and mcapi_endpoint_get()

The mcapi_endpoint_get_i() and mcapi_endpoint_get() functions have the additional

domain_id parameter and mcapi_endpoint_get() a new timeout parameter. mcapi_1000_

endpoint_get_i() and mcapi_1000_endpoint_get() functions are added in the header file

showing how to map to the v 2.000 functions. MCAPI 1.0 endpoints will always be in domain 0.

2.18.1.3 Modified Function Names and Status or Error Codes

Functions with modified names and unchanged parameters are handled with defines. Modified status
and error codes are handled with defines.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 30 of 169

3. MCAPI API

The MCAPI API is divided into seven major parts:

• General

• Endpoints

• Messages

• Packet channels

• Scalar channels

• Non-blocking operations

• Support functions

The following sections enumerate the API calls for each of these major parts.

3.1 Conventions

MCAPI_IN and MCAPI_OUT are used to distinguish between input and output parameters.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 31 of 169

3.2 General

This section describes initialization and introspection functions. All applications wishing to use MCAPI
functionality must use the initialization and finalization routines. Following initialization, the introspection
functions can provide important information to MCAPI-based applications.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 32 of 169

3.2.1 MCAPI_INITIALIZE

NAME

mcapi_initialize

SYNOPSIS

#include <mcapi.h>

void mcapi_initialize(

 MCAPI_IN mcapi_domain_t domain_id,

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_IN mcapi_node_attributes_t* mcapi_node_attributes,

 MCAPI_IN mcapi_param_t* mcapi_parameters,

 MCAPI_OUT mcapi_info_t* mcapi_info,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

mcapi_initialize() initializes the MCAPI environment on a given MCAPI node in a given

MCAPI domain. It has to be called by each node using MCAPI. mcapi_node_attributes is used

to pass MCAPI-defined initialization parameters. mcapi_parameters is used to pass

implementation specific initialization parameters. mcapi_info is used to obtain information from

the MCAPI implementation, including MCAPI standardized information, see below and the header
files and vendor specific implementation information. A node is a process, a thread, or a processor

(or core) with an independent program counter running a piece of code. In other words, an MCAPI
node is an independent thread of control. An MCAPI node can call mcapi_initialize() once

per node, and it is an error to call mcapi_initialize() multiple times from a given node, unless

mcapi_finalize() is called in between. A given MCAPI implementation will specify what is a

node (i.e., what thread of control – process, thread, or other -- is a node) in that implementation. A
thread and process are just two examples of threads of control, and there could be others.

Initialization parameters will vary by implementation, and may include specifications of the amount
of resources to be used for a specific implementation, such as the maximum number of outstanding
requests, etc. An mcapi_node_attributes structure is passed in by reference. A NULL value

for the mcapi_node_attributes pointer indicates that default values should be set.

MCAPI-defined node attributes:

MCAPI_NODE_ATTR_TYPE_REGULAR The node is regular. Default.

The informational parameters include MCAPI-specified information as outlined below, as well as
implementation specific information. Implementation specific information shall be documented by
the implementer.

MCAPI-defined initialization information:

mcapi_version MCAPI version, the three last (rightmost) hex digits are the minor

number and those left of minor the major number.

organization_id Implementation vendor/organization ID.

implementation_version Vendor version, the three last (rightmost) hex digits are the minor

number and those left of minor the major number.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 33 of 169

implementation_version Vendor version, the three last (rightmost) hex digits are the minor

number and those left of minor the major number.

number_of_domains Number of domains in the topology.

number_of_nodes Number of nodes in the domain, can be used for basic per domain

topology discovery.

number_of_ports Number of ports on the local node

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_INITFAILED The MCAPI environment could not be initialized.
MCAPI_ERR_NODE_INITIALIZED The MCAPI environment has already been initialized.
MCAPI_ERR_NODE_INVALID The parameter is not a valid node.
MCAPI_ERR_DOMAIN_INVALID The parameter is not a valid domain.
MCAPI_ERR_PARAMETER Incorrect mcapi_parameters or mcapi_info parameter. Note,

mcapi_parameters can be a NULL pointer, if the MCAPI
version is 1.000, for backwards compatibility purposes.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status
codes. Specifics must be documented.

SEE ALSO
mcapi_finalize()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 34 of 169

3.2.2 MCAPI_FINALIZE

NAME

mcapi_finalize

SYNOPSIS

#include <mcapi.h>

void mcapi_finalize(

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

mcapi_finalize() finalizes the MCAPI environment on the local MCAPI node. It has to be called

by each node using MCAPI, to un-initialize the node. It is an error to call mcapi_finalize()

without first calling mcapi_initialize(). An MCAPI node can call mcapi_finalize() once

for each call to mcapi_initialize(), but it is an error to call mcapi_finalize() multiple times

from a given node unless mcapi_initialize() has been called prior to each

mcapi_finalize() call. Pending data and outstanding requests will be discarded when

mcapi_finalize() is called. Implementations must document other specific functionality of

mcapi_finalize(), if applicable.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.

MCAPI_ERR_NODE_FINALFAILED The MCAPI environment could not be finalized.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status
codes. Specifics must be documented.

SEE ALSO
mcapi_initialize()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 35 of 169

3.2.3 MCAPI_DOMAIN_ID_GET

NAME

mcapi_domain_id_get

SYNOPSIS

#include <mcapi.h>

mcapi_domain_t mcapi_domain_id_get(

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Returns the domain ID associated with the local node.

RETURN VALUE

On success the domain_id is returned, *mcapi_status is set to MCAPI_SUCCESS. On error,

*mcapi_status is set to the appropriate error defined below and the return value is set to

MCAPI_DOMAIN_INVALID.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.
Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 36 of 169

3.2.4 MCAPI_NODE_ID_GET

NAME

mcapi_node_id_get

SYNOPSIS

#include <mcapi.h>

mcapi_node_t mcapi_node_id_get(

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Returns the node ID associated with the local node.

RETURN VALUE

On success the node_id is returned, *mcapi_status is set to MCAPI_SUCCESS. On error,

*mcapi_status is set to the appropriate error defined below and the return value is set to

MCAPI_NODE_INVALID.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.
Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 37 of 169

3.2.5 MCAPI_NODE_INIT_ATTRIBUTES

NAME

mcapi_node_init_attributes

SYNOPSIS

void mcapi_node_init_attributes(

 MCAPI_OUT mcapi_node_attributes_t* mcapi_node_attributes,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

This function initializes the values of an mcapi_node_attributes_t structure. For non-default

behavior this function should be called prior to calling mcapi_node_set_attribute().

mcapi_node_set_attribute() is then used to change any default values prior to calling

mcapi_initialize().

MCAPI-defined node attributes:

MCAPI_NODE_ATTR_TYPE_REGULAR The node is regular. Default.

RETURN VALUE

On success *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_PARAMETER Invalid attributes parameter.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.
Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 38 of 169

3.2.6 MCAPI_NODE_SET_ATTRIBUTE

NAME

mcapi_node_set_attribute

SYNOPSIS

void mcapi_node_set_attribute(

 MCAPI_OUT mcapi_node_attributes_t* mcapi_node_attributes,

 MCAPI_IN mcapi_uint_t attribute_num,

 MCAPI_IN void* attribute,

 MCAPI_IN size_t attribute_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

This function is used to change default values of an mcapi_node_attributes_t data structure

prior to calling mcapi_initialize(). This is a blocking function. Calls to this function have no

effect on node attributes once the MCAPI has been initialized. The purpose of this function is to
define node specific characteristics, and in this MCAPI version has only attribute. The node
attributes are expected to be expanded in future versions.

MCAPI-defined node attributes:

MCAPI_NODE_ATTR_TYPE_REGULAR The node is regular. Default.

RETURN VALUE

On success *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_ATTR_NUM Unknown attribute number.

MCAPI_ERR_ATTR_VALUE Incorrect attribute value.

MCAPI_ERR_ATTR_SIZE Incorrect attribute size.

MCAPI_ERR_ATTR_NOTSUPPORTED Attribute not supported by the implementation.

MCAPI_ERR_ATTR_READONLY Attribute cannot be modified.

MCAPI_ERR_PARAMETER Incorrect mcapi_node_attributes or attribute
parameter.

MCAPI_ERR_GENERAL Implementation specific error not covered by other
status codes. Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 39 of 169

3.2.7 MCAPI_NODE_GET_ATTRIBUTE

NAME

mcapi_node_get_attribute – Get node attributes from a remote node.

SYNOPSIS

#include <mcapi.h>

void mcapi_node_get_attribute(

 MCAPI_IN mcapi_domain_t domain_id,

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_IN mcapi_uint_t attribute_num,

 MCAPI_OUT void* attribute,

 MCAPI_IN size_t attribute_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

mcapi_node_get_attribute() allows the application to query other nodes about their

attributes, e.g. type of node, characteristics, etc. domain_id and node_id specify the node being

queried, attribute_num indicates which one of the node attributes is being referenced. This is a

blocking function. attribute points to a structure or scalar to be filled with the value of the

attribute specified by attribute_num. attribute_size is the size in bytes of the attribute. See

Section 2.2 and header files (Section 7) for a description of attributes. The
mcapi_node_get_attribute() function returns the requested attribute value by reference.

MCAPI-defined node attributes:

MCAPI_NODE_ATTR_TYPE_REGULAR The node is regular. Default.

RETURN VALUE

On success, *attribute is filled with the requested attribute and *mcapi_status is set to

MCAPI_SUCCESS. On error, *mcapi_status is set to an error code and *attribute is not

modified.

ERRORS

MCAPI_ERR_NODE_NOTINIT The local node is not initialized.

MCAPI_ERR_DOMAIN_INVALID The parameter is not a valid domain.

MCAPI_ERR_NODE_INVALID The parameter is not a valid node.

MCAPI_ERR_ATTR_NUM Unknown attribute number.

MCAPI_ERR_ATTR_SIZE Incorrect attribute size.

MCAPI_ERR_ATTR_NOTSUPPORTED Attribute not supported by the implementation.

MCAPI_ERR_PARAMETER Incorrect attribute parameter.

MCAPI_ERR_GENERAL Implementation specific error not covered by other
status codes. Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 40 of 169

3.3 Endpoints

This section describes API functions that create, delete, get and modify endpoints.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 41 of 169

3.3.1 MCAPI_ENDPOINT_CREATE

NAME

mcapi_endpoint_create

SYNOPSIS

#include <mcapi.h>

mcapi_endpoint_t mcapi_endpoint_create(

 MCAPI_IN mcapi_port_t port_id,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

mcapi_endpoint_create() is used to create an endpoint on the local node with the specified

port_id. A port_id of MCAPI_PORT_ANY is used to request the next available endpoint on the

local node.

MCAPI supports a simple static naming scheme to create endpoints based on global tuple names,
<domain_id, node_id, port_id>. Other nodes can access the created endpoint by calling
mcapi_endpoint_get() and specifying the appropriate domain, node and port id.

Static naming allows the programmer to define an MCAPI communication topology at compile time.
This facilitates simple initialization. Section 5.1 illustrates an example of initialization and
bootstrapping using static naming. Creating endpoints using MCAPI_PORT_ANY provides a

convenient method to create endpoints without having to specify the port_id.

RETURN VALUE

On success, an endpoint is returned and *mcapi_status is set to MCAPI_SUCCESS. On error,

MCAPI_NULL (or 0) is returned and *mcapi_status is set to the appropriate error defined below.

MCAPI_NULL (or 0) could be a valid endpoint value so status has to be checked to ensure

correctness.

ERRORS

MCAPI_ERR_PORT_INVALID The parameter is not a valid port. There may be no more available
ports or the port may be reserved.

MCAPI_ERR_ENDP_EXISTS The endpoint is already created.

MCAPI_ERR_NODE_NOTINIT The node is not initialized.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.
Specifics must be documented.

NOTE

The node ID can only be set using the mcapi_intialize() function.

SEE ALSO

mcapi_initialize()

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 42 of 169

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 43 of 169

3.3.2 MCAPI_ENDPOINT_GET_I

NAME

mcapi_endpoint_get_i

SYNOPSIS

#include <mcapi.h>

void mcapi_endpoint_get_i(

 MCAPI_IN mcapi_domain_t domain_id,

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_IN mcapi_port_t port_id,

 MCAPI_OUT mcapi_endpoint_t* endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

mcapi_endpoint_get_i() allows other nodes (“third parties”) to get the endpoint identifier for

the endpoint associated with a global tuple name <domain_id, node_id, port_id>. This

function is non-blocking and will return immediately.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not

yet completed. On error, *mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_PORT_INVALID The parameter is not a valid port. This error also covers
endpoints without ports.

MCAPI_ERR_NODE_INVALID The parameter is not a valid node.
MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_DOMAIN_INVALID The parameter is not a valid domain.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_PARAMETER Incorrect endpoint or request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

NOTE: Use the mcapi_test(), mcapi_wait() and mcapi_wait_any() functions to query

the status of and mcapi_cancel() function to cancel the operation.

SEE ALSO

mcapi_node_id_get()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 44 of 169

3.3.3 MCAPI_ENDPOINT_GET

NAME

mcapi_endpoint_get

SYNOPSIS

#include <mcapi.h>

mcapi_endpoint_t mcapi_endpoint_get(

 MCAPI_IN mcapi_domain_t domain_id,

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_IN mcapi_port_t port_id,

 MCAPI_IN mcapi_timeout_t timeout,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

mcapi_endpoint_get() allows other nodes (“third parties”) to get the endpoint identifier for the

endpoint associated with a global tuple name <domain_id, node_id, port_id>. This function

will block until the specified remote endpoint has been created via the
mcapi_endpoint_create() call or a timeout is reached. A timeout value of

MCAPI_TIMEOUT_INFINITE would cause this function to block until completion (success or

failure).

RETURN VALUE

On success, an endpoint is returned and *mcapi_status is set to MCAPI_SUCCESS. On error,

MCAPI_NULL (or 0) is returned and *mcapi_status is set to the appropriate error defined

below. MCAPI_NULL (or 0) could be a valid endpoint value so status has to be checked to

ensure correctness.

ERRORS

MCAPI_ERR_PORT_INVALID The parameter is not a valid port. This error also covers
endpoints without ports (routing nodes).

MCAPI_ERR_NODE_INVALID The parameter is not a valid node.
MCAPI_ERR_DOMAIN_INVALID The parameter is not a valid domain.
MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_TIMEOUT The operation timed out.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 45 of 169

3.3.4 MCAPI_ENDPOINT_DELETE

NAME

mcapi_endpoint_delete

SYNOPSIS

#include <mcapi.h>

void mcapi_endpoint_delete(

 MCAPI_IN mcapi_endpoint_t endpoint,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Deletes an MCAPI endpoint. Pending messages are discarded. If an endpoint has been connected
to a packet or scalar channel, the appropriate close method must be called before deleting the
endpoint. Delete is a blocking operation. Since the connection is closed before deleting the
endpoint, the delete method does not require any cross-process synchronization and is guaranteed
to return in a timely manner (operation will return without having to block on any IPC to any remote
nodes). It is an error to attempt to delete an endpoint that has not been closed. Only the node that
created an endpoint can delete it. An endpoint that has an open pending but is not yet connected
can be deleted.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not a valid endpoint descriptor.
MCAPI_ERR_CHAN_CONNECTED A channel is connected, deletion is not allowed
MCAPI_ERR_ENDP_NOTOWNER An endpoint can only be deleted by its creator.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

SEE ALSO

mcapi_endpoint_create()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 46 of 169

3.3.5 MCAPI_ENDPOINT_GET_ATTRIBUTE

NAME

mcapi_endpoint_get_attribute

SYNOPSIS

#include <mcapi.h>

void mcapi_endpoint_get_attribute(

 MCAPI_IN mcapi_endpoint_t endpoint,

 MCAPI_IN mcapi_uint_t attribute_num,

 MCAPI_OUT void* attribute,

 MCAPI_IN size_t attribute_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

mcapi_endpoint_get_attribute() allows the programmer to query endpoint attributes on

both node local en remote endpoints. This is a blocking function. attribute_num indicates which

one of the endpoint attributes is being referenced. attribute points to a structure or scalar to be

filled with the value of the attribute specified by attribute_num. attribute_size is the size in

bytes of the memory pointed to by attribute. See Section 2.2 and header files (Section 7) for a

description of attributes

It is an error to attempt a connection between endpoints whose attributes are set in an incompatible
way (whether attributes are compatible or not is implementation-defined). It is also an error to
attempt to change the attributes of endpoints that are connected.

RETURN VALUE

On success, *attribute is filled with the requested attribute and *mcapi_status is set to

MCAPI_SUCCESS. On error, *mcapi_status is set to an error code and *attribute is not

modified.

ATTRIBUTES

mcapi_endp_attr_max_payload_size_t This attribute defines the maximum payload size.
This is a channel compatibility attribute, meaning
that a channel connection requires that this
attribute value is the same for both channel
endpoints. Default value is implementation-
defined.

mcapi_endp_attr_buffer_type_t This attribute defines the endpoint buffer type, at
the present only FIFO type exists. It means that
the order of transmission is FIFO for channels
and FIFO per priority level for messages. This is
a channel compatibility attribute, meaning that a
channel connection requires that this attribute
value is the same for both channel endpoints.
Default value is implementation-defined. Buffer
types: MCAPI_ENDP_ATTR_FIFO_BUFFER

(Default).

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 47 of 169

mcapi_endp_attr_memory_type_t This attribute defines the memory type both the
memory's locality, local, shared and remote.

This is a channel compatibility attribute, meaning
that a channel connection requires that this
attribute value is the same for both channel
endpoints.
Memory locality:
MCAPI_ENDP_ATTR_LOCAL_MEMORY (Default)
MCAPI_ENDP_ATTR_SHARED_MEMORY

MCAPI_ENDP_ATTR_REMOTE_MEMORY

mcapi_endp_attr_num_priorities_t This attribute defines the number of endpoint
priorities. This is a channel compatibility attribute,
meaning that a channel connection requires that
this attribute value is the same for both channel
endpoints. Default value is implementation-
defined.

mcapi_endp_attr_priority_t This attribute defines the endpoint priority,
applied to a channel at the time the channel is
connected. This is a channel compatibility
attribute, meaning that a channel connection
requires that this attribute value is the same for
both channel endpoints. A lower number means
higher priority. A value of MCAPI_MAX_PRORITY

(0) denotes the highest priority.
mcapi_endp_attr_num_send_buffers_t This attribute contains the number of send buffers

at the current endpoint priority level. Default value
is implementation-defined.

mcapi_endp_attr_num_recv_buffers_t This attribute contains the number of receive
buffers available. This can for example be used
for throttling. Implementation-defined default
value

mcapi_endp_attr_status_t This attribute contains endpoint status flags.
Flags are used to query the status of an endpoint,
e.g. if it is connected and if so what type of
channel, direction, etc.
See Note A and STANDARD STATUS FLAGS,
below this table.

mcapi_endp_attr_timeout_t This attribute contains the timeout value for
blocking send and receive functions. a value of
MCAPI_TIMEOUT_IMMEDIATE (or 0) means that

the function will return "immediately", with
success or failure.

MCAPI_TIMEOUT_INFINITE means that the

function will block until it completes with success
or failure. Default =
MCAPI_TIMEOUT_INFINITE.

Note A: The lower 16 bits are defined in mcapi.h whereas the upper 16 bits are reserved for

implementation specific purposes and if used must be defined in implementation_spec.h. It is

therefore recommended that the upper 16 bits be masked off at the application level.

 0x00000000

 ---- mcapi.h

 ---- implementation_spec.h

Default = 0x00000000

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 48 of 169

STANDARD STATUS FLAGS

MCAPI_ENDP_ATTR_STATUS_CONNECTED The endpoint is one end of a connected
channel.

MCAPI_ENDP_ATTR_STATUS_OPEN A channels is open on this endpoint.

MCAPI_ENDP_ATTR_STATUS_OPEN_PENDING A channel open is pending.

MCAPI_ENDP_ATTR_STATUS_CLOSE_PENDING A channel close is pending.

MCAPI_ENDP_ATTR_STATUS_PKTCHAN Packet channel.
MCAPI_ENDP_ATTR_STATUS_SCLCHAN Scalar channel.

MCAPI_ENDP_ATTR_STATUS_SEND Send side.

MCAPI_ENDP_ATTR_STATUS_RECEIVE Receive side.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not an endpoint descriptor.
MCAPI_ERR_ATTR_NUM Unknown attribute number.

MCAPI_ERR_ATTR_SIZE Incorrect attribute size.

MCAPI_ERR_ATTR_NOTSUPPORTED Attribute not supported by the implementation.

MCAPI_ERR_PARAMETER Incorrect attribute parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

SEE ALSO

mcapi_endpoint_set_attribute()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 49 of 169

3.3.6 MCAPI_ENDPOINT_SET_ATTRIBUTE

NAME

mcapi_endpoint_set_attribute

SYNOPSIS

#include <mcapi.h>

void mcapi_endpoint_set_attribute(

 MCAPI_IN mcapi_endpoint_t endpoint,

 MCAPI_IN mcapi_uint_t attribute_num,

 MCAPI_IN const void* attribute,

 MCAPI_IN size_t attribute_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

mcapi_endpoint_set_attribute() allows the programmer to assign endpoint attributes on

the local node. attribute_num indicates which one of the endpoint attributes is being referenced.

attribute points to a structure or scalar to be filled with the value of the attribute specified by

attribute_num. attribute_size is the size in bytes of the memory pointed to by attribute. See

Section 2.3 and mcapi.h for a description of attributes. Endpoint attributes can be set only on the

local node.

It is an error to attempt a connection between endpoints whose attributes are set in an incompatible
way (whether attributes are compatible or not is implementation-defined). It is also an error to
attempt to change the attributes of endpoints that are connected.

ATTRIBUTES

mcapi_endp_attr_max_payload_size_t This attribute defines the maximum payload size.
This is a channel compatibility attribute, meaning
that a channel connection requires that this
attribute value is the same for both channel
endpoints. Default value is implementation-
defined.

mcapi_endp_attr_buffer_type_t This attribute defines the endpoint buffer type, at
the present only FIFO type exists. It means that
the order of transmission is FIFO for channels and
FIFO per priority level for messages. This is a
channel compatibility attribute, meaning that a
channel connection requires that this attribute
value is the same for both channel endpoints.
Default value is implementation-defined. Buffer
types: MCAPI_ENDP_ATTR_FIFO_BUFFER

(Default).

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 50 of 169

mcapi_endp_attr_memory_type_t This attribute defines the memory type both the
memory's locality, local, shared and remote. This

is a channel compatibility attribute, meaning that a
channel connection requires that this attribute
value is the same for both channel endpoints.
Memory locality:
MCAPI_ENDP_ATTR_LOCAL_MEMORY (Default)
MCAPI_ENDP_ATTR_SHARED_MEMORY

MCAPI_ENDP_ATTR_REMOTE_MEMORY

mcapi_endp_attr_num_priorities_t This attribute defines the number of endpoint
priorities. This is a channel compatibility attribute,
meaning that a channel connection requires that
this attribute value is the same for both channel
endpoints. Default value is implementation-
defined.

mcapi_endp_attr_priority_t This attribute defines the endpoint priority, applied
to a channel at the time the channel is connected.
This is a channel compatibility attribute, meaning
that a channel connection requires that this
attribute value is the same for both channel
endpoints. A lower number means higher priority.
A value of MCAPI_MAX_PRORITY (0) denotes the

highest priority.
mcapi_endp_attr_num_send_buffers_t This attribute contains the number of send buffers

at the current endpoint priority level. Default value
is implementation-defined.

mcapi_endp_attr_num_recv_buffers_t This attribute contains the number of receive
buffers available. This can for example be used for
throttling. Implementation-defined default value

mcapi_endp_attr_status_t This attribute contains endpoint status flags. Flags
are used to query the status of an endpoint, e.g. if
it is connected and if so what type of channel,
direction, etc.
See Note A and STANDARD STATUS FLAGS,
below this table.

mcapi_endp_attr_timeout_t This attribute contains the timeout value for
blocking send and receive functions. a value of
MCAPI_TIMEOUT_IMMEDIATE (or 0) means that

the function will return "immediately", with success
or failure. MCAPI_TIMEOUT_INFINITE means

that the function will block until it completes with
success or failure. Default =
MCAPI_TIMEOUT_INFINITE.

Note A: The lower 16 bits are defined in mcapi.h whereas the upper 16 bits are reserved for

implementation specific purposes and if used must be defined in implementation_spec.h. It is

therefore recommended that the upper 16 bits be masked off at the application level.

 0x00000000

 ---- mcapi.h

 ---- implementation_spec.h

Default = 0x00000000

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 51 of 169

STANDARD STATUS FLAGS

MCAPI_ENDP_ATTR_STATUS_CONNECTED The endpoint is one end of a connected
channel.

MCAPI_ENDP_ATTR_STATUS_OPEN A channels is open on this endpoint.

MCAPI_ENDP_ATTR_STATUS_OPEN_PENDING A channel open is pending.

MCAPI_ENDP_ATTR_STATUS_CLOSE_PENDING A channel close is pending.

MCAPI_ENDP_ATTR_STATUS_PKTCHAN Packet channel.
MCAPI_ENDP_ATTR_STATUS_SCLCHAN Scalar channel.

MCAPI_ENDP_ATTR_STATUS_SEND Send side.

MCAPI_ENDP_ATTR_STATUS_RECEIVE Receive side.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.

MCAPI_ERR_ENDP_INVALID Argument is not an endpoint descriptor.

MCAPI_ERR_ATTR_NUM Unknown attribute number.

MCAPI_ERR_ATTR_VALUE Incorrect attribute value.

MCAPI_ERR_ATTR_SIZE Incorrect attribute size.

MCAPI_ERR_ATTR_NOTSUPPORTED Attribute not supported by the implementation.

MCAPI_ERR_ATTR_READONLY Attribute cannot be modified.

MCAPI_ERR_CHAN_CONNECTED Attribute changes not allowed on connected endpoints.

MCAPI_ERR_ENDP_REMOTE Attributes can only be set on local endpoints.

MCAPI_ERR_PARAMETER Incorrect attribute parameter (NULL pointer).

MCAPI_ERR_GENERAL Implementation specific error not covered by other status
codes. Specifics must be documented.

SEE ALSO

mcapi_endpoint_set_attribute()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 52 of 169

3.4 Messages

MCAPI Messages facilitate connectionless transfer of data buffers. The messaging API provides a
“user-specified buffer” communications interface – the programmer specifies a buffer of data to be sent
on the send side, and the user specifies an empty buffer to be filled with incoming data on the receive
side. The implementation must be able to transfer messages to and from any buffer the programmer
specifies, although the implementation may use extra buffering internally to queue up data between the
sender and receiver.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 53 of 169

3.4.1 MCAPI_MSG_SEND_I

NAME

mcapi_msg_send_i

SYNOPSIS

#include <mcapi.h>

void mcapi_msg_send_i(

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_IN void* buffer,

 MCAPI_IN size_t buffer_size,

 MCAPI_IN mcapi_priority_t priority,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Sends a (connectionless) message from a send endpoint to a receive endpoint. It is a non-blocking
function, and returns immediately. send_endpoint, is a local endpoint identifying the send

endpoint, receive_endpoint identifies a receive endpoint. buffer is the application provided

buffer, buffer_size is the buffer size in bytes. priority determines the message priority with a

value of 0 being the highest priority and request is the identifier used to determine if the send

operation has completed on the sending endpoint and the buffer can be reused by the application.
Furthermore, this method will abandon the send and return MCAPI_ERR_MEM_LIMIT if sufficient

memory space is not available. This function cannot be used to send a message to a connected
endpoint. Implementations may chose to prevent messages from being sent to connected endpoint
or to leave it up to the application to manage this. Functionality for this may be added in a future
version of MCAPI in it is therefore recommended that implementations preventing messages from
being sent to connected endpoint use MCAPI_ERR_GENERAL to report an error. The behavior

should be documented.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not

yet completed. On error, *mcapi_status is set to the appropriate error defined below.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 54 of 169

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID One or both endpoints are invalid.
MCAPI_ERR_MSG_SIZE The message size exceeds the maximum size allowed by the

MCAPI implementation.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_MEM_LIMIT No memory available.
MCAPI_ERR_PRIORITY Incorrect priority level.
MCAPI_ERR_TRANSMISSION Transmission failure. This error code is optional, and if

supported by an implementation, its functionality shall be
described.

MCAPI_ERR_PARAMETER Incorrect request or buffer (applies if buffer = NULL and
buffer_size > 0) parameter.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status
codes. Specifics must be documented.

NOTE

Use the mcapi_test(), mcapi_wait() and mcapi_wait_any() functions to query the status

of and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 55 of 169

3.4.2 MCAPI_MSG_SEND

NAME

mcapi_msg_send

SYNOPSIS

#include <mcapi.h>

void mcapi_msg_send(

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_IN void* buffer,

 MCAPI_IN size_t buffer_size,

 MCAPI_IN mcapi_priority_t priority,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Sends a (connectionless) message from a send endpoint to a receive endpoint. It is a blocking
function, and returns once the buffer can be reused by the application. send_endpoint is a local

endpoint identifying the send endpoint and receive_endpoint identifies a receive endpoint.

buffer is the application provided buffer and buffer_size is the buffer size in bytes. priority

determines the message priority with a value of 0 being the highest priority. This method will block if
there is insufficient memory space available. When sufficient space becomes available, the function
will complete. This function cannot be used allowed to send a message to a connected endpoint.
Implementations may chose to prevent messages from being sent to connected endpoint or to leave
it up to the application to manage this. Functionality for this may be added in a future version of
MCAPI in it is therefore recommended that implementations preventing messages from being sent
to connected endpoint use MCAPI_ERR_GENERAL to report an error. The behavior should be

documented.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below. Success means that the entire buffer has been sent.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID One or both endpoints are invalid.
MCAPI_ERR_MSG_SIZE The message size exceeds the maximum size allowed by the

MCAPI implementation.
MCAPI_ERR_PRIORITY Incorrect priority level.
MCAPI_ERR_TRANSMISSION Transmission failure. This error code is optional, and if

supported by an implementation, its functionality shall be
described.

MCAPI_ERR_PARAMETER Incorrect buffer (applies if buffer = NULL and buffer_size > 0)
parameter.

MCAPI_TIMEOUT The operation timed out. Implementations can optionally
support timeout for this function. The timeout value is set with
endpoint attributes.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status
codes. Specifics must be documented.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 56 of 169

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 57 of 169

3.4.3 MCAPI_MSG_RECV_I

NAME

mcapi_msg_recv_i

SYNOPSIS

#include <mcapi.h>

void mcapi_msg_recv_i(

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT void* buffer,

 MCAPI_IN size_t buffer_size,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Receives a (connectionless) message from a receive endpoint. It is a non-blocking function, and
returns immediately. receive_endpoint is a local endpoint identifying the receive endpoint.

buffer is the application provided buffer, and buffer_size is the buffer size in bytes. request is

the identifier used to determine if the receive operation has completed (all the data is in the buffer).
Furthermore, this method will abandon the receive and return MCAPI_ERR_MEM_LIMIT if the

system cannot either wait for sufficient memory to become available or allocate enough memory.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not

yet completed. On error, *mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not a valid local endpoint descriptor.
MCAPI_ERR_MSG_TRUNCATED The message size exceeds the buffer_size.
MCAPI_ERR_TRANSMISSION Transmission failure. This error code is optional, and if

supported by an implementation, its functionality shall be
described.

MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_MEM_LIMIT No memory available.
MCAPI_ERR_PARAMETER Incorrect buffer and/or request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status of and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 58 of 169

3.4.4 MCAPI_MSG_RECV

NAME

mcapi_msg_recv

SYNOPSIS

#include <mcapi.h>

void mcapi_msg_recv(

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT void* buffer,

 MCAPI_IN size_t buffer_size,

 MCAPI_OUT size_t* received_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Receives a (connectionless) message from a receive endpoint. It is a blocking function, and returns
once a message is available and the received data filled into the buffer. receive_endpoint is a

local endpoint identifying the receive endpoint. buffer is the application provided buffer, and

buffer_size is the buffer size in bytes. The received_size parameter is filled with the actual

size of the received message. This method will block if there is insufficient memory space available.
When sufficient space becomes available, the function will complete.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not a valid local endpoint descriptor.
MCAPI_ERR_MSG_TRUNCATED The message size exceeds the buffer_size.

MCAPI_ERR_TRANSMISSION Transmission failure. This error code is optional, and if
supported by an implementation, its functionality shall be
described.

MCAPI_ERR_PARAMETER Incorrect buffer and/or received_size parameter.

MCAPI_TIMEOUT The operation timed out. Implementations can optionally
support timeout for this function. The timeout value is set with
endpoint attributes.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status
codes. Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 59 of 169

3.4.5 MCAPI_MSG_AVAILABLE

NAME

mcapi_msg_available

SYNOPSIS

#include <mcapi.h>

mcapi_uint_t mcapi_msg_available(

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Checks if messages are available on a local receive endpoint. The function returns in a timely
fashion. The number of “available” incoming messages is defined as the number of
mcapi_msg_recv() operations that are guaranteed to not block waiting for incoming data.

receive_endpoint is a local identifier for the receive endpoint. The call only checks the availability of
messages and does not dequeue them. mcapi_msg_available() can only be used to check

availability on endpoints on the node local to the caller.

RETURN VALUE

On success, the number of available messages is returned and *mcapi_status is set to

MCAPI_SUCCESS. On error, MCAPI_NULL (or 0) is returned and *mcapi_status is set to the

appropriate error defined below. MCAPI_NULL (or 0) could be a valid number of available

messages, so status has to be checked to ensure correctness.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not a valid local endpoint descriptor.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The status code must be checked to distinguish between no messages and an error condition.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 60 of 169

3.5 Packet Channels

MCAPI packet channels transfer data packets between a pair of connected endpoints. A connection
between two endpoints is established via a two-phase process. First, some node in the system calls
mcapi_pktchan_connect_i() to define a connection between two endpoints. This function returns

immediately. In the second phase, both sender and receiver open their end of the channel by invoking
mcapi_pktchan_send_open_i() and mcapi_pktchan_recv_open_i(), respectively. The

connection is synchronized when both the sender and receiver open functions have completed. In order
to avoid deadlock situations, the open functions are non-blocking.

This two-phased binding approach has several important benefits. The “connect” call can be made by
any node in the system, which allows the programmer to define the entire channel topology in a single
piece of code. This code could even be auto-generated by some static connection tool. This makes it
easy to change the channel topology without having to modify multiple source files. This approach also
allows the sender and receiver to do their work without any knowledge of what remote nodes they are
connected to. This allows for better modularity and application scaling.

Packet channels provide a “system-specified buffer” interface. The programmer specifies the address of
a buffer of data to be sent on the send side, but the receiver's recv function returns a buffer of data at

an address chosen by the system. This is different from the “user-specified buffer” interface use by
MCAPI messaging – with messages the programmer chooses the buffer in which data is received, and
with packet channels the system chooses the buffer.

It is not allowed to send messages to connected endpoints.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 61 of 169

3.5.1 MCAPI_PKTCHAN _CONNECT_I

NAME

mcapi_pktchan_connect_i

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_connect_i(

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Connects a pair of endpoints into a unidirectional FIFO channel. The connect operation can be
performed by the sender, the receiver, or by a third party. The connect can happen at the start of
the program, or dynamically at run time.

Connect is a non-blocking function. Synchronization to ensure the channel has been created is
provided by the open call discussed later.

Attempts to make multiple connections to a single endpoint will be detected as errors. The type of
channel connected to an endpoint must match the type of open call invoked by that endpoint; the
open function will return an error if the opened channel type does not match the connected channel
type, or direction.

It is an error to attempt a connection between endpoints whose attributes are set in an incompatible
way (whether attributes are compatible or not is implementation-defined). It is also an error to
attempt to change the attributes of endpoints that are connected. It is an error to connect an
endpoint with itself. A previously connected endpoint can't be connected until the previous channel
is disconnected (implies both sides closed).

RETURN VALUE

On success *mcapi_status is set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not

yet completed. On error, *mcapi_status is set to the appropriate error defined below.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 62 of 169

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not a valid endpoint descriptor, or both

endpoints are the same.
MCAPI_ERR_CHAN_CONNECTED A channel connection has already been established for

one or both of the specified endpoints.
MCAPI_ERR_CHAN_CLOSEPENDING A close request is pending.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_ATTR_INCOMPATIBLE Connection of endpoints with incompatible attributes not

allowed.
MCAPI_ERR_PARAMETER Incorrect request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 63 of 169

3.5.2 MCAPI_PKTCHAN_RECV_OPEN_I

NAME

mcapi_pktchan_recv_open_i

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_recv_open_i(

 MCAPI_OUT mcapi_pktchan_recv_hndl_t* receive_handle,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Opens the receive end of a packet channel. The corresponding calls are required on both sides for
synchronization to ensure that the channel has been created. It is a non-blocking function, and the
receive_handle is filled in upon successful completion. No specific ordering of calls between

sender and receiver is required since the call is non-blocking. receive_endpoint is the local

endpoint associated with the channel. The open call returns a typed, local handle for the connected
channel that is used for channel receive operations. An endpoint with a previously open channel
can't be opened until the previous channel is disconnected (implies both sides closed).

RETURN VALUE

On success, meaning that both sides of the channel are successfully open, *mcapi_status is set

to MCAPI_SUCCESS if completed and MCAPI_PENDING if not yet completed. On error

*mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not a valid local endpoint descriptor.
MCAPI_ERR_CHAN_TYPE Attempt to open a packet channel on an endpoint that has

been connected with a different channel type.
MCAPI_ERR_CHAN_DIRECTION Attempt to open a receive handle on an endpoint that was

connected as a sender.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_CHAN_OPENPENDING An open request is pending.
MCAPI_ERR_CHAN_CLOSEPENDING A close request is pending.
MCAPI_ERR_CHAN_OPEN The channel is already open.
MCAPI_ERR_ENDP_DELETED The endpoint has been deleted.
MCAPI_ERR_PARAMETER Incorrect handle or request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status and mcapi_cancel() function to cancel the operation.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 64 of 169

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 65 of 169

3.5.3 MCAPI_PKTCHAN_SEND_OPEN_I

NAME

mcapi_pktchan_send_open_i

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_send_open_i(

 MCAPI_OUT mcapi_pktchan_send_hndl_t* send_handle,

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Opens the send end of a packet channel. The corresponding calls are required on both sides for
synchronization to ensure that the channel has been created. It is a non-blocking function, and the
send_handle is filled in upon successful completion. No specific ordering of calls between sender

and receiver is required since the call is non-blocking. send_endpoint is the local endpoint

associated with the channel. The open call returns a typed, local handle for the connected endpoint
that is used by channel send operations. An endpoint with a previously open channel can't be
opened until the previous channel is disconnected (implies both sides closed).

RETURN VALUE

On success, meaning that both sides of the channel are successfully open, *mcapi_status is set to
MCAPI_SUCCESS if completed and MCAPI_PENDING if not yet completed. On error,
*mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not a valid local endpoint descriptor.
MCAPI_ERR_CHAN_TYPE Attempt to open a packet channel on an endpoint that

has been connected with a different channel type.
MCAPI_ERR_CHAN_DIRECTION Attempt to open a send handle on a port that was

connected as a receiver.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_CHAN_OPENPENDING An open request is pending.
MCAPI_ERR_CHAN_CLOSEPENDING A close request is pending.
MCAPI_ERR_CHAN_OPEN The channel is already open.
MCAPI_ERR_ENDP_DELETED The endpoint has been deleted.
MCAPI_ERR_PARAMETER Incorrect handle or request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other

status codes. Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status and mcapi_cancel() function to cancel the operation.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 66 of 169

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 67 of 169

3.5.4 MCAPI_PKTCHAN_SEND_I

NAME

mcapi_pktchan_send_i

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_send_i(

 MCAPI_IN mcapi_pktchan_send_hndl_t send_handle,

 MCAPI_IN void* buffer,

 MCAPI_IN size_t size,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Sends a packet on a connected channel. It is a non-blocking function, and returns immediately.
buffer is the application provided buffer and size is the buffer size. request is the identifier used to
determine if the send operation has completed on the sending endpoint and the buffer can be
reused. While this method returns immediately, data transfer will not complete until the packet has
been transmitted. The definition of transmission in this context is implementation-defined and may
include blocking until the send buffer is available for reuse. Alternatively the buffer's availability for
reuse can be tested with the mcapi_pktchan_release_test() function. The behavior must be

documented by the implementation. Furthermore, this method will abandon the send and return
MCAPI_ERR_MEM_LIMIT if the system cannot either wait for sufficient memory to become available

or allocate enough memory.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not

yet completed. On error, *mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a valid channel handle.
MCAPI_ERR_PKT_SIZE The packet size exceeds the maximum size allowed by the

MCAPI implementation.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_MEM_LIMIT No memory available.
MCAPI_ERR_TRANSMISSION Transmission failure. This error code is optional, and if

supported by an implementation, its functionality shall be
described.

MCAPI_ERR_PARAMETER Incorrect request or buffer (applies if buffer = 0 and buffer_size
> 0) parameter.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status
codes. Specifics must be documented.

NOTE

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 68 of 169

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 69 of 169

3.5.5 MCAPI_PKTCHAN_SEND

NAME

mcapi_pktchan_send

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_send(

 MCAPI_IN mcapi_pktchan_send_hndl_t send_handle,

 MCAPI_IN void* buffer,

 MCAPI_IN size_t size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Sends a packet on a connected channel. This method will block until the packet has been
transmitted. The definition of transmission in this context is implementation-defined and may include
blocking until the send buffer is available for reuse. Alternatively the buffer's availability for reuse
can be tested with the mcapi_pktchan_release_test() function. The behavior must be

documented by the implementation. send_handle is the local send handle which represents the

send endpoint associated with the channel. buffer is the application provided buffer and size is

the buffer size. Since channels behave like FIFOs, by default this method will block if the packet
can't be transmitted because of lack of memory space. When sufficient space becomes available,
the function will complete. By default this method will block if there is insufficient memory space
available. When sufficient space becomes available, the function will complete.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below. Success means that the entire buffer has been sent.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a valid channel handle.
MCAPI_ERR_PKT_SIZE The message size exceeds the maximum size allowed by the

MCAPI implementation.
MCAPI_ERR_TRANSMISSION Transmission failure. This error code is optional, and if supported

by an implementation, its functionality shall be described.
MCAPI_ERR_PARAMETER Incorrect buffer (applies if buffer = 0 and buffer_size > 0)

parameter.
MCAPI_TIMEOUT The operation timed out. Implementations can optionally support

timeout for this function. The timeout value is set with endpoint
attributes.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.
Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 70 of 169

3.5.6 MCAPI_PKTCHAN_RECV_I

NAME

mcapi_pktchan_recv_i

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_recv_i(

 MCAPI_IN mcapi_pktchan_recv_hndl_t receive_handle,

 MCAPI_OUT void** buffer,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Receives a packet on a connected channel. It is a non-blocking function, and returns immediately.
receive_handle is the local representation of the handle used to receive packets. When the

receive operation completes, the buffer parameter is filled with the address of a system-supplied

buffer containing the received packet. After the receive request has completed and the application is
finished with buffer, buffer must be returned to the system by calling

mcapi_pktchan_release(). request is the identifier used to determine if the receive operation

has completed and buffer is ready for use; the mcapi_test(), mcapi_wait() or

mcapi_wait_any() function will return the actual size of the received packet. Furthermore, this

method will abandon the receive and return MCAPI_ERR_MEM_LIMIT if sufficient memory space is

not available.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not

yet completed. On error, *mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a valid channel handle.
MCAPI_ERR_MEM_LIMIT No memory available
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_TRANSMISSION Transmission failure. This error code is optional, and if supported

by an implementation, its functionality shall be described.
MCAPI_ERR_PARAMETER Incorrect buffer or request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 71 of 169

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status of and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 72 of 169

3.5.7 MCAPI_PKTCHAN_RECV

NAME

mcapi_pktchan_recv

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_recv(

 MCAPI_IN mcapi_pktchan_recv_hndl_t receive_handle,

 MCAPI_OUT void** buffer,

 MCAPI_OUT size_t* received_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Receives a packet on a connected channel. It is a blocking function, and returns when the data has
been written to the buffer. receive_handle is the local representation of the receive endpoint

associated with the channel. When the receive operation completes, the buffer parameter is filled
with the address of a system-supplied buffer containing the received packet. and received_size

is filled with the size of the packet in that buffer. When the application finishes with buffer, it must
return it to the system by calling mcapi_pktchan_release(). By default this method will block if

there is insufficient memory space available. When sufficient space becomes available, the function
will complete.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a valid channel handle.
MCAPI_ERR_TRANSMISSION Transmission failure. This error code is optional, and if supported

by an implementation, it's functionality shall be described.
MCAPI_ERR_PARAMETER Incorrect buffer or received_size parameter.

MCAPI_TIMEOUT The operation timed out. Implementations can optionally support
timeout for this function. The timeout value is set with endpoint
attributes.

MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.
Specifics must be documented.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 73 of 169

3.5.8 MCAPI_PKTCHAN_AVAILABLE

NAME

mcapi_pktchan_available

SYNOPSIS

#include <mcapi.h>

mcapi_uint_t mcapi_pktchan_available(

 MCAPI_IN mcapi_pktchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Checks if packets are available on a receive endpoint. This function returns in a timely fashion. The
number of available packets is defined as the number of receive operations that could be performed
without blocking to wait for incoming data. receive_handle is the local handle for the packet

channel. The call only checks the availability of packets and does not dequeue them.

RETURN VALUE

On success, the number of available packets are returned and *mcapi_status is set to

MCAPI_SUCCESS. On error, MCAPI_NULL (or 0) is returned and *mcapi_status is set to the

appropriate error defined below. MCAPI_NULL (or 0) could be a valid number of available packets,

so status has to be checked to ensure correctness.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The status code must be checked to distinguish between no messages and an error condition.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 74 of 169

3.5.9 MCAPI_PKTCHAN_RELEASE

NAME

mcapi_pktchan_release

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_release(

 MCAPI_IN void* buffer,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

When a user is finished with a packet buffer obtained from mcapi_pktchan_recv_i() or

mcapi_pktchan_recv(), they must invoke this function to return the buffer to the system. Buffers

can be released in any order. This function is guaranteed to return in a timely fashion. Buffers can
be released by the receiving node only.

RETURN VALUE

On success *mcapi_status is set to MCAPI_SUCCESS. On error, *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_BUF_INVALID Argument is not a valid buffer descriptor (including NULL).
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

SEE ALSO

mcapi_pktchan_recv(), mcapi_pktchan_recv_i()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 75 of 169

3.5.10 MCAPI_PKTCHAN_RELEASE_TEST

NAME

mcapi_pktchan_release_test

SYNOPSIS

#include <mcapi.h>

mcapi_boolean_t mcapi_pktchan_release_test(

 MCAPI_IN void* buffer,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Checks if a packet buffer obtained from a mcapi_pktchan_recv() has been released with

mcapi_pktchan_release by the receiver. This function is blocking and returns in a timely

fashion.

RETURN VALUE

On success, MCAPI_TRUE is returned and *mcapi_status is set to MCAPI_SUCCESS. If the

operation has not completed MCAPI_FALSE is returned and *mcapi_status is set to

MCAPI_PENDING. On error MCAPI_FALSE is returned and *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_PARAMETER Incorrect buffer parameter (NULL).
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

SEE ALSO

mcapi_pktchan_release()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 76 of 169

3.5.11 MCAPI_PKTCHAN_RECV_CLOSE_I

NAME

mcapi_pktchan_recv_close_i

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_recv_close_i(

 MCAPI_IN mcapi_pktchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Closes the receive side of a channel. The sender makes the send-side call and the receiver makes
the receive-side call. The corresponding calls are required on both sides to ensure that the channel
has been properly closed. It is a non-blocking function, and returns immediately. receive_handle

is the local representation of the handle used to receive packets. All pending packets are discarded,
and any attempt to send more packets will give an error. A packet channel is disconnected when,
both sides have issued close calls and the last (second) close operation is performed.

RETURN VALUE

On success, meaning that both sides of the channel are successfully closed, *mcapi_status is

set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not yet completed. On error

*mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a valid channel handle.
MCAPI_ERR_CHAN_TYPE Attempt to close a packet channel on an endpoint that has been

connected with a different channel type.
MCAPI_ERR_CHAN_DIRECTION Attempt to close a send handle on a port that was connected as

a receiver, or vice versa.
MCAPI_ERR_CHAN_NOTOPEN The channel is not open.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_PARAMETER Incorrect request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status of and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 77 of 169

3.5.12 MCAPI_PKTCHAN_SEND_CLOSE_I

NAME

mcapi_pktchan_send_close_i

SYNOPSIS

#include <mcapi.h>

void mcapi_pktchan_send_close_i(

 MCAPI_IN mcapi_pktchan_send_hndl_t send_handle,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Closes the send side of a channel. The sender makes the send-side call and the receiver makes the
receive-side call. The corresponding calls are required on both sides to ensure that the channel has
been properly closed. It is a non-blocking function, and returns immediately. send_handle is the

local representation of the handle used to send packets. Pending packets at the receiver are not
discarded. A packet channel is disconnected when, both sides have issued close calls and the last
(second) close operation is performed.

RETURN VALUE

On success, meaning that both sides of the channel are successfully closed, *mcapi_status is

set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not yet completed. On error

*mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_CHAN_TYPE Attempt to close a packet channel on an endpoint that has been

connected with a different channel type.
MCAPI_ERR_CHAN_DIRECTION Attempt to close a send handle on a port that was connected as

a receiver, or vice versa.
MCAPI_ERR_CHAN_NOTOPEN The channel is not open.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_PARAMETER Incorrect request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status of and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 78 of 169

3.6 Scalar Channels

MCAPI scalar channels are used to transfer 8-bit, 16-bit, 32-bit and 64-bit scalars on a connected
channel. The connection process for scalar channels uses the same two-phase mechanism as packet
channels. See the packet channel section for a detailed description of the connection process.

The MCAPI scalar channels API provides only blocking send and receive methods. Scalar channels are
intended to provide a very low overhead interface for moving a stream of values. In fact, some
embedded systems may be able to implement a scalar channel as a hardware FIFO. The sort of
streaming algorithms that take advantage of scalar channels should not require a non-blocking send or
receive method; each process should simply receive a value to work on, do its work, send the result out
on a channel, and repeat. Applications that require non-blocking semantics should use packet channels
instead of scalar channels. The scalar functions only support communication of same size scalars on
both sides, i.e. an 8-bit send must be read by an 8-bit receive, etc.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 79 of 169

3.6.1 MCAPI_SCLCHAN_CONNECT_I

NAME

mcapi_sclchan_connect_i

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_connect_i(

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Connects a pair of endpoints into a unidirectional FIFO channel. The connect operation can be
performed by the sender, the receiver, or by a third party. The connect can happen once at the start
of the program or dynamically at run time.

mcapi_sclchan_connect_i() is a non-blocking function. Synchronization to ensure the

channel has been created is provided by the open call discussed later.

This function behaves like the packet channel connect call.

Attempts to make multiple connections to a single endpoint will be detected as errors. The type of
channel connected to an endpoint must match the type of open call invoked by that endpoint; the
open function will return an error if the opened channel type does not match the connected channel
type, or direction.

It is an error to attempt a connection between endpoints whose attributes are set in an incompatible
way (whether attributes are compatible or not is implementation-defined). It is also an error to
attempt to change the attributes of endpoints that are connected. It is an error to connect an
endpoint with itself. A previously connected endpoint can't be connected until the previous channels
is disconnected (implies both sides closed).

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not

yet completed. On error *mcapi_status is set to the appropriate error defined below.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 80 of 169

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not a valid endpoint descriptor, or both

endpoints are the same.
MCAPI_ERR_CHAN_CONNECTED A channel connection has already been established for one

or both of the specified endpoints.
MCAPI_ERR_CHAN_CLOSEPENDING A close request is pending.
MCAPI_ERR_ATTR_INCOMPATIBLE Connection of endpoints with incompatible attributes not

allowed.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_PARAMETER Incorrect request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status of and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 81 of 169

3.6.2 MCAPI_SCLCHAN_RECV_OPEN_I

NAME

mcapi_sclchan_recv_open_i

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_recv_open_i(

 MCAPI_OUT mcapi_sclchan_recv_hndl_t* receive_handle,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Opens the receive end of a scalar channel. It also provides synchronization for channel creation
between two endpoints. The corresponding calls are required on both sides to synchronize the
endpoints. It is a non-blocking function, and the recv_handle is filled in upon successful

completion. No specific ordering of calls between sender and receiver is required since the call is
non-blocking. receive_endpoint is the local endpoint identifier. The call returns a local handle

for the connected channel. An endpoint with a previously open channel cannot be opened until the
previous channel is disconnected (implies both sides closed).

RETURN VALUE

On success, meaning that both sides of the channel are successfully open, *mcapi_status is set

to MCAPI_SUCCESS if completed and MCAPI_PENDING if not yet completed. On error,

*mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
 MCAPI_ERR_ENDP_INVALID Argument is not an endpoint descriptor. A remote endpoint

is also invalid for this function.
MCAPI_ERR_CHAN_TYPE Attempt to open a packet channel on an endpoint that has

been connected with a different channel type.
MCAPI_ERR_CHAN_DIRECTION Attempt to open a send handle on a port that was

connected as a receiver, or vice versa.
MCAPI_ERR_CHAN_OPENPENDING An open request is pending.
MCAPI_ERR_CHAN_CLOSEPENDING A close request is pending.
MCAPI_ERR_CHAN_OPEN The channel is already open.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_ENDP_DELETED The endpoint has been deleted.
MCAPI_ERR_PARAMETER Incorrect handle or request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status and mcapi_cancel() function to cancel the operation.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 82 of 169

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 83 of 169

3.6.3 MCAPI_SCLCHAN_SEND_OPEN_I

NAME

mcapi_sclchan_send_open_i

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_send_open_i(

 MCAPI_OUT mcapi_sclchan_send_hndl_t* send_handle,

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Opens the send end of a scalar channel. It also provides synchronization for channel creation
between two endpoints. The corresponding calls are required on both sides to synchronize the
endpoints. It is a non-blocking function, and the send_handle is filled in upon successful completion.
No specific ordering of calls between sender and receiver is required since the call is non-blocking.
send_endpoint is the local endpoint identifier. The call returns a local handle for connected

channel. An endpoint with a previously open channel can't be opened until the previous channel is
disconnected (implies both sides closed).

RETURN VALUE

On success, meaning that both sides of the channel are successfully open, *mcapi_status is set

to MCAPI_SUCCESS if completed and MCAPI_PENDING if not yet completed. On error,

*mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_ENDP_INVALID Argument is not an endpoint descriptor. A remote endpoint is

also invalid for this function.
MCAPI_ERR_CHAN_TYPE Attempt to open a packet channel on an endpoint that has

been connected with a different channel type.
MCAPI_ERR_CHAN_DIRECTION Attempt to open a send handle on a port that was connected

as a receiver, or vice versa.
MCAPI_ERR_CHAN_OPENPENDING An open request is pending.
MCAPI_ERR_CHAN_CLOSEPENDING A close request is pending.
MCAPI_ERR_CHAN_OPEN The channel is already open.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_ENDP_DELETED The endpoint has been deleted.
MCAPI_ERR_PARAMETER Incorrect handle or request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status and mcapi_cancel() function to cancel the operation.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 84 of 169

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 85 of 169

3.6.4 MCAPI_SCLCHAN_SEND_UINT64

NAME

mcapi_sclchan_send_uint64

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_send_uint64(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_IN mcapi_uint64_t dataword,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Sends a 64-bit scalar on a connected channel. It is a blocking function, and returns immediately
unless the buffer is full. send_handle is the send endpoint identifier. dataword is the scalar.

Since channels behave like FIFOs, this method will block if there is no free space in the channel's
receive buffer. When sufficient space becomes available (due to receive calls), the function will
complete.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error *mcapi_status is set to the

appropriate error defined below. Optionally, implementations may choose to always set
*mcapi_status to MCAPI_SUCCESS for performance reasons.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The receive scalar size must match the send size.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 86 of 169

3.6.5 MCAPI_SCLCHAN_SEND_UINT32

NAME

mcapi_sclchan_send_uint32

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_send_uint32(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_IN mcapi_uint32_t dataword,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Sends a 32-bit scalar on a connected channel. It is a blocking function, and returns immediately
unless the buffer is full. send_handle is the send endpoint identifier. dataword is the scalar.

Since channels behave like FIFOs, this method will block if there is no free space in the channel's
receive buffer. When sufficient space becomes available (due to receive calls), the function will
complete.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error *mcapi_status is set to the

appropriate error defined below. Optionally, implementations may choose to always set
*mcapi_status to MCAPI_SUCCESS for performance reasons.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The receive scalar size must match the send size.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 87 of 169

3.6.6 MCAPI_SCLCHAN_SEND_UINT16

NAME

mcapi_sclchan_send_uint16

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_send_uint16(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_IN mcapi_uint16_t dataword,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Sends a 16-bit scalar on a connected channel. It is a blocking function, and returns immediately
unless the buffer is full. send_handle is the send endpoint identifier. dataword is the scalar.

Since channels behave like FIFOs, this method will block if there is no free space in the channel's
receive buffer. When sufficient space becomes available (due to receive calls), the function will
complete.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error *mcapi_status is set to the

appropriate error defined below. Optionally, implementations may choose to always set
*mcapi_status to MCAPI_SUCCESS for performance reasons.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The receive scalar size must match the send size.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 88 of 169

3.6.7 MCAPI_SCLCHAN_SEND_UINT8

NAME

mcapi_sclchan_send_uint8

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_send_uint8(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_IN mcapi_uint8_t dataword,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Sends an 8-bit scalar on a connected channel. It is a blocking function, and returns immediately
unless the buffer is full. send_handle is the send endpoint identifier. dataword is the scalar.

Since channels behave like FIFOs, this method will block if there is no free space in the channel's
receive buffer. When sufficient space becomes available (due to receive calls), the function will
complete.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error *mcapi_status is set to the

appropriate error defined below. Optionally, implementations may choose to always set
*mcapi_status to MCAPI_SUCCESS for performance reasons.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The receive scalar size must match the send size.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 89 of 169

3.6.8 MCAPI_SCLCHAN_RECV_UINT64

NAME

mcapi_sclchan_recv_uint64

SYNOPSIS

#include <mcapi.h>

mcapi_uint64_t mcapi_sclchan_recv_uint64(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Receives a 64-bit scalar on a connected channel. It is a blocking function, and returns when a
scalar is available. receive_handle is the receive endpoint identifier.

RETURN VALUE

On success, a value of type uint64_t is returned and *mcapi_status is set to

MCAPI_SUCCESS. On error, the return value is undefined and *mcapi_status is set to the

appropriate error defined below. Optionally, implementations may choose to always set
*mcapi_status to MCAPI_SUCCESS for performance reasons.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The receive scalar size must match the send size.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 90 of 169

3.6.9 MCAPI_SCLCHAN_RECV_UINT32

NAME

mcapi_sclchan_recv_uint32

SYNOPSIS

#include <mcapi.h>

mcapi_uint32_t mcapi_sclchan_recv_uint32(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Receives a 32-bit scalar on a connected channel. It is a blocking function, and returns when a
scalar is available. receive_handle is the receive endpoint identifier.

RETURN VALUE

On success, a value of type uint32_t is returned and *mcapi_status is set to

MCAPI_SUCCESS. On error, the return value is undefined and *mcapi_status is set to the

appropriate error defined below. Optionally, implementations may choose to always set
*mcapi_status to MCAPI_SUCCESS for performance reasons.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The receive scalar size must match the send size.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 91 of 169

3.6.10 MCAPI_SCLCHAN_RECV_UINT16

NAME

mcapi_sclchan_recv_uint16

SYNOPSIS

#include <mcapi.h>

mcapi_uint16_t mcapi_sclchan_recv_uint16(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Receives a 16-bit scalar on a connected channel. It is a blocking function, and returns when a
scalar is available. receive_handle is the receive endpoint identifier.

RETURN VALUE

On success, a value of type uint16_t is returned and *mcapi_status is set to

MCAPI_SUCCESS. On error, the return value is undefined and *mcapi_status is set to the

appropriate error defined below. Optionally, implementations may choose to always set
*mcapi_status to MCAPI_SUCCESS for performance reasons.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The receive scalar size must match the send size.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 92 of 169

3.6.11 MCAPI_SCLCHAN_RECV_UINT8

NAME

mcapi_sclchan_recv_uint8

SYNOPSIS

#include <mcapi.h>

mcapi_uint8_t mcapi_sclchan_recv_uint8(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Receives an 8-bit scalar on a connected channel. It is a blocking function, and returns when a
scalar is available. receive_handle is the receive endpoint identifier.

RETURN VALUE

On success, a value of type uint8_t is returned and *mcapi_status is set to MCAPI_SUCCESS.

On error, the return value is undefined and *mcapi_status is set to the appropriate error defined

below. Optionally, implementations may choose to always set *mcapi_status to

MCAPI_SUCCESS for performance reasons.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The receive scalar size must match the send size.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 93 of 169

3.6.12 MCAPI_SCLCHAN_AVAILABLE

NAME

mcapi_sclchan_available

SYNOPSIS

#include <mcapi.h>

mcapi_uint_t mcapi_sclchan_available(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Checks if scalars are available on a receive endpoint. The function returns immediately.
receive_endpoint is the receive endpoint identifier. The call only checks the availability of messages
does not dequeue them.

RETURN VALUE

On success, the number of available scalars is returned and *mcapi_status is set to

MCAPI_SUCCESS. On error, MCAPI_NULL (or 0)is returned and *mcapi_status is set to the

appropriate error defined below. MCAPI_NULL (or 0) could be a valid number of available scalars,

so status has to be checked to ensure correctness.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

The status code must be checked to distinguish between no messages and an error condition.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 94 of 169

3.6.13 MCAPI_SCLCHAN_RECV_CLOSE_I

NAME

mcapi_sclchan_recv_close_i

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_recv_close_i(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Closes the receive side of a channel. The corresponding calls are required on both send and
receive sides to ensure that the channel is properly closed. It is a non-blocking function, and returns
immediately. receive_handle is the local representation of the handle used to receive packets.

All pending scalars are discarded, and any attempt to send more scalars will give an error. A scalar
channel is disconnected when, both sides have issued close calls and the last (second) close
operation is performed.

RETURN VALUE

On success, meaning that both sides of the channel are successfully closed, *mcapi_status is

set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not yet completed. On error

*mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_CHAN_TYPE Attempt to close a packet channel on an endpoint that has

been connected with a different channel type.
MCAPI_ERR_CHAN_DIRECTION Attempt to close a send handle on a port that was connected

as a receiver, or vice versa.
MCAPI_ERR_CHAN_NOTOPEN The channel is not open.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_PARAMETER Incorrect request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status of and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 95 of 169

3.6.14 MCAPI_SCLCHAN_SEND_CLOSE_I

NAME

mcapi_sclchan_send_close_i

SYNOPSIS

#include <mcapi.h>

void mcapi_sclchan_send_close_i(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Closes the send side of a channel. The corresponding calls are required on both send and receive
sides to ensure that the channel is properly closed. It is a non-blocking function, and returns
immediately. send_handle is the local representation of the handle used to send packets. Pending

scalars at the receiver are not discarded. A scalar channel is disconnected when, both sides have
issued close calls and the last (second) close operation is performed.

RETURN VALUE

On success, meaning that both sides of the channel are successfully closed, *mcapi_status is

set to MCAPI_SUCCESS if completed and MCAPI_PENDING if not yet completed. On error

*mcapi_status is set to the appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_CHAN_INVALID Argument is not a channel handle.
MCAPI_ERR_CHAN_TYPE Attempt to close a packet channel on an endpoint that has been

connected with a different channel type.
MCAPI_ERR_CHAN_DIRECTION Attempt to close a send handle on a port that was connected as

a receiver, or vice versa.
MCAPI_ERR_CHAN_NOTOPEN The channel is not open.
MCAPI_ERR_REQUEST_LIMIT No more request handles available.
MCAPI_ERR_PARAMETER Incorrect request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status codes.

Specifics must be documented.

NOTE

Use the mcapi_test() , mcapi_wait() and mcapi_wait_any() functions to query the

status of and mcapi_cancel() function to cancel the operation.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 96 of 169

3.7 Non-Blocking Operations

The connectionless message and packet channel API functions have both blocking and non-blocking
variants. The non-blocking versions fill in a mcapi_request_t or mca_request_t object and

return control to the user before the communication operation is completed. The mcapi_test(),

mcapi_wait(),mcapi_wait_any() and mcapi_cancel() functions are used to query the status

of the non-blocking operation.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 97 of 169

3.7.1 MCAPI_TEST

NAME

mcapi_test

SYNOPSIS

#include <mcapi.h>

mcapi_boolean_t mcapi_test(

 MCAPI_IN mcapi_request_t* request,

 MCAPI_OUT size_t* size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Checks if a non-blocking operation has completed. The function returns in a timely fashion. request
is the identifier for the non-blocking operation. The call only checks the completion of an operation
and doesn’t affect any messages/packets/scalars and does not release the request. If the specified
request completes and the pending operation was a send or receive operation, the size parameter
is set to the number of bytes that were either sent or received by the non-blocking transaction. The
request is released with either of mcapi_wait(), mcapi_wait_any(), or mcapi_cancel().

RETURN VALUE

On success, MCAPI_TRUE is returned and *mcapi_status is set to MCAPI_SUCCESS. If the

operation has not completed MCAPI_FALSE is returned and *mcapi_status is set to

MCAPI_PENDING. On error MCAPI_FALSE is returned and *mcapi_status is set to the

appropriate error defined below or an error code for the corresponding non-blocking routine
associated with the request structure.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_REQUEST_INVALID Argument is not a valid request handle. This also applies if the

request has been canceled.
MCAPI_ERR_PARAMETER Incorrect size parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

SEE ALSO

mcapi_endpoint_t mcapi_endpoint_getmcapi_endpoint_get_i(),

mcapi_msg_send_i(), mcapi_msg_recv_i(), mcapi_pktchan_connect_i(),

mcapi_pktchan_recv_open_i(), mcapi_pktchan_send_open_i(),

mcapi_pktchan_send_i(), mcapi_pktchan_recv_i(),

mcapi_pktchan_recv_close_i(), mcapi_pktchan_send_close_i(),

mcapi_sclchan_connect_i(), mcapi_sclchan_recv_open_i(),

mcapi_sclchan_send_open_i(), mcapi_sclchan_recv_close_i(),

mcapi_sclchan_send_close_i()

NOTE

It is important to release the request with either of mcapi_wait(), mcapi_wait_any(), or

mcapi_cancel(), in order to manage system resources.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 98 of 169

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 99 of 169

3.7.2 MCAPI_WAIT

NAME

mcapi_wait

SYNOPSIS

#include <mcapi.h>

mcapi_boolean_t mcapi_wait(

 MCAPI_IN mcapi_request_t* request,

 MCAPI_OUT size_t* size,

 MCAPI_IN mcapi_timeout_t timeout,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Wait until a non-blocking operation has completed. It is a blocking function and returns when the
operation has completed, has been canceled, or a timeout has occurred. request is the identifier

for the non-blocking operation. The call only waits for the completion of an operation (all buffers
referenced in the operation have been filled or consumed and can now be safely accessed by the
application) and doesn’t affect any messages/packets/scalars. The size parameter is set to the
number of bytes that were either sent or received by the non-blocking transaction that completed
(size is irrelevant for non-blocking connect and close calls). The mcapi_wait() call will return if

the request is cancelled, by another thread (during the waiting), by a call to mcapi_cancel(), and

the returned mcapi_status will indicate that the request was cancelled. The units for timeout are

implementation-defined. If a timeout occurs the returned status will indicate that the timeout
occurred. A value of 0 for the timeout parameter indicates that the function will return without
blocking with failure or success and a value of MCAPI_INFINITE for the timeout parameter

indicates no timeout is requested, i.e. the function will block until it is unblocked because of failure
or success. In regards to timeouts, mcapi_wait is non destructive, i.e. the request is not cleared in

the case of a timeout and can be waited upon multiple times. Multiple threads attempting to wait on
the same request will result in an error.

RETURN VALUE

On success, MCAPI_TRUE is returned and *mcapi_status is set to MCAPI_SUCCESS. On error,

cancellation or timeout MCAPI_FALSE is returned and *mcapi_status is set to the appropriate

error/status defined below for parameter errors for the mcapi_wait() call or an error code for the

corresponding non-blocking routine associated with the request structure.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_REQUEST_INVALID Argument is not a valid request handle.
MCAPI_ERR_REQUEST_CANCELLED The request was canceled, by another thread (during the

waiting).
MCAPI_ERR_WAIT_PENDING A wait is pending.
MCAPI_TIMEOUT The operation timed out.
MCAPI_ERR_PARAMETER Incorrect request or size parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 100 of 169

SEE ALSO

mcapi_endpoint_t mcapi_endpoint_getmcapi_endpoint_get_i(),

mcapi_msg_send_i(), mcapi_msg_recv_i(), mcapi_pktchan_connect_i(),

mcapi_pktchan_recv_open_i(), mcapi_pktchan_send_open_i(),

mcapi_pktchan_send_i(), mcapi_pktchan_recv_i(),

mcapi_pktchan_recv_close_i(), mcapi_pktchan_send_close_i(),

mcapi_sclchan_connect_i(), mcapi_sclchan_recv_open_i(),

mcapi_sclchan_send_open_i(), mcapi_sclchan_recv_close_i(),

mcapi_sclchan_send_close_i()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 101 of 169

3.7.3 MCAPI_WAIT_ANY

NAME

mcapi_wait_any

SYNOPSIS

#include <mcapi.h>

mcapi_uint_t mcapi_wait_any(

 MCAPI_IN size_t number,

 MCAPI_IN mcapi_request_t* requests,

 MCAPI_OUT size_t* size,

 MCAPI_IN mcapi_timeout_t timeout,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Wait until any non-blocking operation of a list has completed. It is a blocking function and returns
the index into the requests array (starting from 0) indicating which of any outstanding operations has
completed (successfully or with an error). number is the number of requests in the array. requests is
the array of mcapi_request_t identifiers for the non-blocking operations. The call only waits for

the completion of an operation and doesn’t affect any messages/packets/scalars. The size
parameter is set to number of bytes that were either sent or received by the non-blocking
transaction that completed (size is irrelevant for non-blocking connect and close calls). The
mcapi_wait_any() call will return if any of the requests are cancelled, by another thread (during

the waiting), by a call to mcapi_cancel(), and the returned mcapi_status will indicate that the

request was cancelled.The units for timeout are implementation-defined. If a timeout occurs the
mcapi_status parameter will indicate that a timeout occurred. A value of 0 for the timeout

parameter indicates that the function will return without blocking with failure or success and a value
of MCAPI_INFINITE for the timeout parameter indicates no timeout is requested, i.e. the function

will block until it is unblocked because of failure or success. In regards to timeouts
mcapi_wait_any() is non destructive, i.e. the request is not cleared in the case of a timeout and

can be waited upon multiple times. Multiple threads attempting to wait on the same request will
result in an error.

RETURN VALUE

On success, the index into the requests array of the mcapi_request_t identifier that has

completed is returned and *mcapi_status is set to MCAPI_SUCCESS. The index is aslo returned

for canceled or invalid requests and the return status will indicate that a request was cancelled or
was invalid. The index may also be returned for implementation specific use of
MCAPI_ERR_GENERAL and if so shall be documented by the implementer. For other errors or

timeout, MCAPI_RETURN_VALUE_INVALID is returned and *mcapi_status is set to the

appropriate error/status defined below for parameter errors for the mcapi_wait_any() call or

errors from the requesting functions, as defined in those respective functions.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 102 of 169

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_REQUEST_INVALID Argument is not a valid request handle.
MCAPI_ERR_REQUEST_CANCELLED One of the requests was canceled, by another thread (during

the waiting).
MCAPI_ERR_WAIT_PENDING A wait is pending.
MCAPI_TIMEOUT The operation timed out.
MCAPI_ERR_PARAMETER Incorrect number (if = 0), requests or size parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

SEE ALSO

mcapi_endpoint_t mcapi_endpoint_getmcapi_endpoint_get_i(),

mcapi_msg_send_i(), mcapi_msg_recv_i(), mcapi_pktchan_connect_i(),

mcapi_pktchan_recv_open_i(), mcapi_pktchan_send_open_i(),

mcapi_pktchan_send_i(), mcapi_pktchan_recv_i(),

mcapi_pktchan_recv_close_i(), mcapi_pktchan_send_close_i(),

mcapi_sclchan_connect_i(), mcapi_sclchan_recv_open_i(),

mcapi_sclchan_send_open_i(), mcapi_sclchan_recv_close_i(),

mcapi_sclchan_send_close_i()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 103 of 169

3.7.4 MCAPI_CANCEL

NAME

mcapi_cancel

SYNOPSIS

#include <mcapi.h>

void mcapi_cancel(

 MCAPI_IN mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

DESCRIPTION

Cancels an outstanding non-blocking operation. It is a blocking function and returns when the
operation has been canceled. request is the identifier for the non-blocking operation. Any pending
calls to mcapi_wait() or mcapi_wait_any() for this request will also be cancelled. The

returned status of a canceled mcapi_wait() or mcapi_wait_any() call will indicate that the

request was cancelled.

RETURN VALUE

On success, *mcapi_status is set to MCAPI_SUCCESS. On error *mcapi_status is set to the

appropriate error defined below.

ERRORS

MCAPI_ERR_NODE_NOTINIT The node is not initialized.
MCAPI_ERR_REQUEST_INVALID Argument is not a valid request handle (the operation and

mcapi_wait() or mcapi_wait_any() may have

completed).
MCAPI_ERR_PARAMETER Incorrect request parameter.
MCAPI_ERR_GENERAL Implementation specific error not covered by other status

codes. Specifics must be documented.

SEE ALSO

mcapi_endpoint_t mcapi_endpoint_getmcapi_endpoint_get_i(),

mcapi_msg_send_i(), mcapi_msg_recv_i(), mcapi_pktchan_connect_i(),

mcapi_pktchan_recv_open_i(), mcapi_pktchan_send_open_i(),

mcapi_pktchan_send_i(), mcapi_pktchan_recv_i(),

mcapi_pktchan_recv_close_i(), mcapi_pktchan_send_close_i(),

mcapi_sclchan_connect_i(), mcapi_sclchan_recv_open_i(),

mcapi_sclchan_send_open_i(), mcapi_sclchan_recv_close_i(),

mcapi_sclchan_send_close_i()

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 104 of 169

3.8 Support Functions

Support functions are included to simplify the use of MCAPI.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 105 of 169

3.8.1 MCAPI_DISPLAY_STATUS

NAME

mcapi_display_status

SYNOPSIS

#include <mcapi.h>

char* mcapi_display_status(

 MCAPI_IN mcapi_status_t mcapi_status,

 MCAPI_OUT char* status message,

 MCAPI_IN size_t size

);

DESCRIPTION

Display an MCAPI status message in text format. It is a blocking function and returns in a timely
fashion. The status_message parameter should point to an application provided char buffer of

size size (recommended value for size = MCAPI_MAX_STATUS_MSG_LEN). mcapi_status is

the status code. The status message string is NULL terminated.

RETURN VALUE

The status code in text format is returned. If the status code is invalid a NULL string is returned.

ERRORS

None.

IMPLEMENTATION SPECIFIC DETAILS
[This section reserved for inclusion of implementation specific details]

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 106 of 169

4. FAQ

Q: Is a reference implementation available? What is the intended purpose of the reference
implementation?

A: An example implementation is available for download at the Multicore Association website. The
example implementation models the functionality of the specification and does not intend to be a high-
performance implementation.

Q: Does MCAPI provide binary interoperability?

A: MCAPI provides a set of communications primitives that supports source-code portability.
Interoperability is not addressed at this stage and is left to the respective MCAPI implementations.
Implementers should, however, be encouraged to ensure implementation interoperability, as much as
possible. We may consider an interoperable messaging protocol in future MCAPI versions.

Q: What is the rationale behind MCAPI's use of unidirectional channels as opposed to bidirectional
channels?

A: MCAPI is meant to serve as an extremely lightweight and thin communications API for use by
applications and by other messaging systems (such as light-weight sockets) layered on top of it. MCAPI
is expected to run on both multicore processors running real operating systems and running extremely
thin run-time environments in bare-metal mode. MCAPI is also meant largely for on-chip multicore
environments in which communication is reliable.

MCAPI chose to go with unidirectional channels because they use fewer resources on both the send
and receive sides. A bidirectional channel would need to consume twice the resources on both the send
and receive sides (for example, hardware queues).

Many of our use cases require only unidirectional channels. Although unidirectional channels could be
implemented using a bidirectional channel, it would waste half the resources. Conversely, bidirectional
channels can be implemented on top of unidirectional channels when desired. Locking mechanisms on
the send and receive sides provided by the underlying system on top of which MCAPI is built (or
provided by a layer such as MRAPI) can be used to achieve atomicity between sends and receives on
each side.

Bidirectional channels are particularly effective in error-prone environments. MCAPI's target is multicore
processors, where communication is expected to be reliable.

Q: How does MCAPI compare to other existing multicore communication protocols?

A: MCAPI is a low-level communication protocol specifically targeting statically configured
heterogeneous multicore processors. The static property allows implementations to have lower
overhead than other communication protocols such a sockets or MPI.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 107 of 169

Q: Regarding message sends, when can the sender reuse the buffer?

A: With blocking calls, the send can reuse the buffer after the call has returned. With non-blocking calls,
it is the responsibility of the sender to verify that the buffer can be reused.

Q: Can MCAPI support a software-controlled implementation of global power management? If so, how?

A: MCAPI provides communication functionality between different cores in a multicore multiprocessor
and can function at user level and system level. If the global power management scheme requires data
to be passed between different cores, an MCAPI implementation could be used to provide the
communication functionality.

Q: Will MCAPI require modification of existing operating systems?

A: MCAPI is a communication API and does not define requirements for implementation. It is possible to
implement MCAPI on top of a commercial off-the-shelf OS with no OS modifications, however an
efficient implementation of MCAPI may require changes to the operating system.

Q: Can MCAPI be implemented in hardware?

A: The goal of MCAPI is to make possible efficient implementation in hardware.

Q: If MCAPI is oriented towards static connection topologies, why support methods like
mcapi_endpoint_delete()?

A: The ability to release any resources allocated by an endpoint may be particularly important in
hardware implementations in which resources are strictly limited. Supporting the deletion of endpoints
allows the application programmer to dispose of endpoints that are only necessary for a portion of the
application's life.

Q: What facilities are provided for debugging MCAPI programs?

A: The MCAPI API is designed to be implemented as a C library, using standard tools and enabling the
use of standard debuggers and profilers. The MCAPI error codes should also help give some visibility
into what sort of program errors have occurred. The MCAPI channel-connection mechanism is designed
to work with static layout tools, so that a channel topology can be defined and debugged outside of the
program itself. We also expect that some implementations will provide tools for dynamically collecting
information like which channels have been connected and how many packets have been transferred.

Q: Why doesn’t the MCAPI API support one-to-multiple, multiple-to-one. and barrier-type
communications?

A: To keep the MCAPI API simple and allow for efficient implementations, more complex functions that
can be layered on top of MCAPI are not part of the MCAPI specification.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 108 of 169

Q: Why doesn’t MCAPI provide name service functionality?

A: The MCAPI API is meant for multicore chips or multi-chip boards, which are static environments in
the sense that the number of cores is always the same. A naming service is therefore not needed and
would add unnecessary complexity. The initialization functionality added in version 2.000 provides for
basic topology discovery. A naming service could be implemented on top of MCAPI.

Q: I'd like to have a name service for looking up MCAPI endpoints. How can I achieve this functionality?

A: The MCAPI standard defines a communication layer that allows easy creation of a name server. The
application can choose a statically determined (domain, node, port) tuple in which the name service will
run. For example, domain, node 0, port 1 might be a good choice. The name server process can be
started by calling mcapi_initialize(0,0, …) to bind itself to domain 0, port 0 and then calling

mcapi_endpoint_create(1, &status). The name server can then use message send and

receive operations to implement its service. Clients can discover the name server by invoking
mcapi_endpoint_get(0, 0, 1, &status) to get the its endpoint_t. Given the endpoint_t,

each client can send and receive messages as required by your name service protocol.

Q: What happens if my cores have different byte order (endian-ness)?

A: The MCAPI API specification does not state how to implement an MCAPI API. The specific
implementation would have to address byte order.

Q: How do I use my MCAPI calls so that the source code is portable between implementations with
different node-numbering policies?

A: To make code portable between implementations that allow only one node number (and
mcapi_initialize call) per process, and those that allow one node number (and

mcapi_initialize call) per thread, the code should only make one mcapi_initialize call per

process. If there are multiple threads within the process, they should use different port numbers
(endpoints) for communication.

Similarly, to make code portable between implementations that allow only one node number (and
mcapi_ initialize call) per processor, and those that allow one node number (and mcapi_

initialize call) per task, the code should only make one mcapi_ initialize call per processor.

If there are multiple tasks running on the processor, they should use different port numbers (endpoints)
for communication.

Q: Does the MCAPI specification provide for multiple readers or multiple writers on an endpoint?

A: No, the specification does not provide for this. However, it does not prevent it either. An MCAPI
implementation can provide a mechanism whereby multiple endpoints resolve to essentially the same
destination. For example, if an SoC contained a hardware device which managed multiple hardware
queues used for moving messages around the SoC, an MCAPI implementation could allow multiple
writers to a single hardware queue by simply mapping a set of distinct send endpoints to that single
hardware queue. The implementation might choose to do this by assigning a range of port_ids to

map to the single hardware device.

For example, assume the MCAPI implementation identifies the hardware device that provided the
hardware managed queues as node_id 10, and the range of ports 0..16 is assigned to map to

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 109 of 169

hardware queue zero within that device. Then a send to endpoint <0,10,0> and a send to endpoint
<0,10,1> would both map to a send to queue zero in the hardware device. Different nodes within the
system wishing to send to the queue would have to allocate a unique send endpoint, but the sends
would all end up in queue zero in the hardware accelerator. Similarly, an MCAPI implementation could
map multiple receive endpoints to a single hardware queue. In this example, any reads from multiple
endpoints mapped to the single hardware queue would be serviced on a first-come, first-served basis.
This would be suitable for a load balancing application, but would not be sufficient to serve as a
multicast operation. Support for multicast operations will be considered in future MCAPI specification
releases.

Q: How can I implement callback capability with MCAPI?

A: Although MCAPI does not directly provide a callback capability, MCAPI is designed to have many
kinds of application services layered on top of it, and callbacks can be done this way. This approach
would require you to use the MCAPI non-blocking send or receive functions, and to write a new function
which would take the mcapi_request_t returned from calling these MCAPI functions along with a

pointer to your callback function as parameters. This new function could use mcapi_test,

mcapi_wait, or mcapi_wait_any to determine when the outstanding MCAPI request has completed

and then call your callback function. This might be implemented by having a separate thread monitoring
a list of outstanding requests and providing callbacks on completion. If you cannot create multithreaded
applications your callback solution may be more difficult to implement.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 110 of 169

5. Use Cases

5.1 Example Use of Static Naming for Initialization

MCAPI’s static tuple-based naming mechanism makes it straightforward to implement a simple
initialization scheme, including third-party set up of static connections. This example describes how a
packet channel can be created and used using the static tuple-based naming scheme.

#define SENDER_DOMAIN 0

#define SENDER_NODE 0

#define SEND_PORT_ID 17

#define RECEIVER_DOMAIN 0

#define RECEIVER_NODE 1

#define RECV_PORT_ID 37

Sender Process:

mcapi_endpoint_t send_endpoint = mcapi_endpoint_create(SEND_PORT_ID,

&status);

Receiver Process:

mcapi_endpoint_t receive_endpoint = mcapi_endpoint_create(RECV_PORT_ID,

&status);

The connection can now be established by the receiver, the sender, or a third party process. We will use
the example of a third party process.

Third party process:

mcapi_endpoint_t send_endpoint = mcapi_endpoint_get(SENDER_DOMAIN,

SENDER_NODE, SEND_PORT_ID, &status);

mcapi_endpoint_t receive_endpoint = mcapi_endpoint_get(RECEIVER_DOMAIN,

RECEIVER_NODE,

 RECV_PORT_ID, &status);

mcapi_pktchan_connect_i(send_endpoint, receive_endpoint, …)

Thus, the performance impact of a global name-service lookup is entirely in the mcapi_endpoint_get()
call.

5.2 Example Initialization of Dynamic Endpoints

This example describes how MCAPI performs discovery and bootstrapping when the static naming
based on tuples is not being used, but instead, the dynamic endpoint scheme is used.

Whether communication is by messages or by channels, MCAPI requires a sending node to have
available an endpoint on the receiving node in order to communicate. Thus, there is the following
discovery and bootstrapping issue in MCAPI when static naming is not in use (and in any dynamic
communication API for that matter): How to transfer the first endpoint from a receiver to a sender? This

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 111 of 169

section proposes a discovery model, which addresses the issue of how an MCAPI sender can bootstrap
itself by finding the endpoint for a receiver, before any user-level communication has been established.

The basic idea is to allow the MCAPI runtime system to facilitate the creation of a root endpoint that is
visible to all the nodes in the system. An endpoint can “publish” itself to the communications layer as the
“root” or first-level name server of the namespace using statically known domain and node numbers. For
example, the system could have exactly one statically numbered node, domain 0, node 0. All other
nodes in the system would then register with node 0 via asynchronous messaging, sending it messages
to let it know that they exist and what endpoints they have dynamically created. Similarly, dynamic
nodes and endpoints can discover each other by sending messages to the root node. The format of the
message is user-defined.

5.3 Automotive Use Case

5.3.1 Characteristics

5.3.1.1 Sensors

Tens to hundreds of sensor inputs read on a periodic basis. Each sensor is read and its data are
processed by a scheduled task.

5.3.1.2 Control Task

 A control task takes sensor values and computes values to apply to various actuators in the engine.

5.3.1.3 Lost Data

Lost data is not desirable, but old data quickly becomes irrelevant; the most-recent sample is most
important.

5.3.1.4 Types of Tasks

Consists of both control and signal processing, especially FFT.

5.3.1.5 Load Balance

The load balance changes as engine speed increases. The frequency at which the control task must be
run is determined by the RPM of the engine.

5.3.1.6 Message Size and Frequency

Messages are expected to be small and message frequency is high.

5.3.1.7 Synchronization

Synchronization between control and data tasks should be minimal to avoid negative impacts on latency
of the control task. If shared memory is used there can be multiple tasks writing and one reader.
Deadlock will not occur, but old data may be used if an update is not ready.

5.3.1.8 Shared Memory

Typical engine controllers incorporate on-chip flash and SRAM and can access off-chip memory as well.
Shared memory regions must be in the SRAM for maximum performance. Because a small OS or no
OS is involved, it is typical for logical mappings of addresses to be avoided. If an MMU is involved, it will
typically be programmed for logical == physical and with few large page entries versus lots of small
page entries. Maintenance of a page table and use of page-replacement algorithms should be avoided.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 112 of 169

5.3.2 Key Functionality Requirements

5.3.2.1 Control Task

There must be a control task collecting all data and calculating updates. This task must update engine
parameters continuously. Updates to engine parameters must occur when the engine crankshaft is at a
particular angle, so the faster the engine is running, the more frequently this task must run.

5.3.2.2 Angle Task

There must be a data task to monitor engine RPM and schedule the control task.

5.3.2.3 Data Tasks

There must be a set of tens to hundreds of tasks to poll sensors. The task must communicate this data
to the control task.

5.3.3 Context and Constraints

5.3.3.1 Operating System

Often there is no commercial operating system involved, although the notion of time-critical tasks and
task scheduling must be supported by some type of executive. However, this may be changing.
Possible candidates are OSEK, or other RTOS.

5.3.3.2 Polling and Interrupts

Sensor inputs may be polled and/or associated with interrupts.

5.3.3.3 Reliability

Sensors are assumed to be reliable. Interconnect is assumed to be reliable. Task completion within
scheduled deadline is assumed to be reliable for the control task, and less reliable for the data tasks.

5.3.4 Metrics

5.3.4.1 Latency of Control Task

Latency of the control task depends on engine RPM. At 1800 RPM the task must complete every
33.33ms, and at 9000 RPM the task must complete every 6.667ms.

5.3.4.2 Number of Dropped Sensor Readings

Ideally zero.

5.3.4.3 Latencies of Data Tasks

Ideally the sum of the latencies plus message send/receive times should be less than the latency of the
control loop, given the current engine RPM. In general, individual tasks are expected to complete in
times varying from 1ms up to 1600ms, depending on the nature of the sensor and the type of
processing required for its data.

5.3.4.4 Code Size

Automotive customers expect their code to fit into on-chip SRAM. The current generation of chips often
has 1Mb of SRAM, with 2Mb on the near horizon.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 113 of 169

5.3.5 Possible Factorings

• 1 general-purpose core for control, 1 general-purpose core for data

• 1 general-purpose core for control/data, dedicated SIMD core for signal processing, other special-
purpose cores for remainder of data processing

• 1 core per cylinder, or 1 core per group of cylinders

5.3.6 MCAPI Requirements Implications

• Fast locks supporting multiple writers and a single reader are required. Maximum lock rate <<
6ms on 800mhz core would be typical.

• Locks must work transparently whether they are unicore or multicore.

• Ability to select shared-memory region based on attribute: SRAM.

• Ability to select shared-memory region based on attribute: logical == physical.

• Ability to select shared memory region based on attribute: no MMU overhead (other than initial
page-entry set up if required).

5.3.7 Mental Models

Engine Knock?

Hardware
Accelerator

(TPU)
Memory

CPU

D to A

A to D

Clean Burn?

Carburator

Sensor

SensorSensorSensorSensor

Flywheel

Figure 3. Example Hardware

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 114 of 169

Engine Knock?

Hardware
Accelerator

(TPU)
Memory

CPU

D to A

A to D

Clean Burn?

Carburator

Sensor

SensorSensorSensorSensor

Flywheel

Signal Processing

Tasks (CPU)

TPU Task

(TPU)

Control Task

(CPU)

Initialize

(CPU)

main (…) {

create shared memory

create msg chans (connections)

create/schedule tasks, passing

parms such as chans, mem regions

wait forever

}

for (…) {

wait TPU task msg

read shared memory

for (signal processing task) {

test signal msg

if (msg) recv msg

}

compute new carburator params

update carburator

}

for (…) {

read sensor

compute RPM

update shared memory

send msg to control task

}

for (…) {

read sensor

process signal

send msg to control task

}

Hardware Configuration

Software Configuration

Figure 4. A Possible Mapping

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 115 of 169

Engine Knock?

Hardware
Accelerator

(TPU)
Memory

CPU2 D to A

A to D

Clean Burn?

Carburator

Sensor

SensorSensorSensorSensor

Flywheel

CPU1

Hardware Configuration

Signal Processing

Tasks (CPU2)

main (…) {

create shared memory

create msg chans (connections)

create/schedule tasks, passing

parms such as chans, mem regions

wait forever

}

TPU Task

(TPU)

Control Task

(CPU1)

Initialize

(CPU)

for (…) {

wait TPU task msg

read shared memory

for (signal processing task) {

wait for signal msg

}

compute new carburator params

update carburator

}

for (…) {

read sensor

compute RPM

update shared memory

send msg to control task

}

for (…) {

read sensor

process signal

send msg to control task

}

Software Configuration

Figure 5. Alternative Hardware

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 116 of 169

5.3.8 MCAPI Pseudocode

5.3.8.1 Initial Mapping

/*

 * MCAPI 2.000 Automotive Use Case

 * automotive.h

 *

 */

#ifndef AUTOMOTIVE_H_

#define AUTOMOTIVE_H_

#define ENGINE_DOMAIN 0

#define CNTRL_NODE 0

#define TPU_NODE 1

#define SIG_NODE 2

#define TPU_PORT_CNTRL 0

#define CNTRL_PORT_TPU 1

#define CNTRL_PORT_SIG 2

#define SIG_PORT_CNTRL 3

#define PRIO_HIGH 0

#define SHMEM_SIZE 32

#define CHECK_STATUS(err)

#define CHECK_MEM(sMem);

typedef struct {

 int angle;

 int rpm;

} SIG_DATA;

#endif /* AUTOMOTIVE_H_ */

/*

 * MCAPI 2.000 Automotive Use Case

 * control_task.c

 *

 */

#include "mcapi.h"

#include "automotive.h"

extern char* shmemget(int size);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 117 of 169

///

// The control task

///

void Control_Task(void) {

 char* sMem;

 mcapi_uint8_t tFlag;

 mcapi_endpoint_t tpu_endpt, tpu_remote_endpt;

 mcapi_endpoint_t sig_endpt, sig_remote_endpt;

 mcapi_endpoint_t tmp_endpt;

 mcapi_sclchan_recv_hndl_t tpu_chan;

 mcapi_pktchan_recv_hndl_t sig_chan;

 SIG_DATA sDat;

 size_t tSize;

 mcapi_request_t r1, r2;

 mcapi_status_t err;

 mcapi_priority_t priority = PRIO_HIGH;

 mcapi_node_attributes_t mcapi_node_attributes;

 mcapi_param_t mcapi_parameters;

 mcapi_info_t mcapi_info;

 mcapi_timeout_t timeout = 500;

 // init node attributes

 mcapi_node_init_attributes(&mcapi_node_attributes, &err);

 // init the system

 mcapi_initialize(ENGINE_DOMAIN, SIG_NODE, &mcapi_node_attributes,

 &mcapi_parameters, &mcapi_info, &err);

 CHECK_STATUS(err);

 // first create two local endpoints

 tpu_endpt = mcapi_endpoint_create(CNTRL_PORT_TPU, &err);

 CHECK_STATUS(err);

 sig_endpt = mcapi_endpoint_create(CNTRL_PORT_SIG, &err);

 CHECK_STATUS(err);

 // now we get two remote endpoints

 mcapi_endpoint_get_i(ENGINE_DOMAIN, TPU_NODE, TPU_PORT_CNTRL,

 &tpu_remote_endpt, &r1, &err);

 CHECK_STATUS(err);

 sig_remote_endpt = mcapi_endpoint_get(ENGINE_DOMAIN, SIG_NODE,

 SIG_PORT_CNTRL, timeout, &err);

 CHECK_STATUS(err);

 // wait on the endpoints

 while(!((mcapi_test(&r1, &tSize, &err))) && (mcapi_test(&r2, &tSize,

 &err))) {

 // KEEP WAITING

 }

 // allocate shared memory and send the ptr to TPU task

 sMem = shmemget(32);

 tmp_endpt = mcapi_endpoint_create(MCAPI_PORT_ANY, &err);

 CHECK_STATUS(err);

 mcapi_msg_send(tmp_endpt, tpu_remote_endpt, sMem, SHMEM_SIZE, priority,

 &err);

 CHECK_STATUS(err);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 118 of 169

 // connect the channels

 mcapi_sclchan_connect_i(tpu_endpt, tpu_remote_endpt, &r1, &err);

 CHECK_STATUS(err);

 mcapi_pktchan_connect_i(sig_endpt, sig_remote_endpt, &r2, &err);

 CHECK_STATUS(err);

 // wait on the connections

 while(!((mcapi_test(&r1, &tSize, &err))) && (mcapi_test(&r2, &tSize,

 &err))) {

 // KEEP WAITING

 }

 // now open the channels

 mcapi_sclchan_recv_open_i(&tpu_chan, tpu_endpt, &r1, &err);

 CHECK_STATUS(err);

 mcapi_pktchan_recv_open_i(&sig_chan, sig_endpt, &r2, &err);

 CHECK_STATUS(err);

 // wait on the channels

 while(!((mcapi_test(&r1, &tSize, &err))) && (mcapi_test(&r2, &tSize,

 &err))) {

 // KEEP WAITING

 }

 // now ALL of the bootstrapping is finished

 // we move to the processing phase below

 while (1) {

 // wait for TPU to indicate it has updated

 // shared memory, indicated by receipt of a flag

 tFlag = mcapi_sclchan_recv_uint8(tpu_chan, &err);

 CHECK_STATUS(err);

 // read the shared memory

 if (sMem[0] != 0) {

 // process the shared memory data

 } else {

 // PANIC -- there was an error with the shared mem

 }

 // now get data from the signal processing task

 // would be a loop if there were multiple sig tasks

 mcapi_pktchan_recv(sig_chan, (void **) &sDat, &tSize, &err);

 CHECK_STATUS(err);

 // Compute new carb params & update carb

 }

}

/*

 * MCAPI 2.000 Automotive Use Case

 * sig_task.c

 *

 */

#include "mcapi.h"

#include "automotive.h"

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 119 of 169

//

// The SIG Processing Task

//

void SIG_task() {

 mcapi_endpoint_t cntrl_endpt, cntrl_remote_endpt;

 mcapi_pktchan_send_hndl_t cntrl_chan;

 mcapi_request_t r1;

 mcapi_status_t err;

 size_t size;

 mcapi_node_attributes_t mcapi_node_attributes;

 mcapi_param_t mcapi_parameters;

 mcapi_info_t mcapi_info;

 mcapi_timeout_t timeout = 500;

 // init node attributes

 mcapi_node_init_attributes(&mcapi_node_attributes, &err);

 // init the system

 mcapi_initialize(ENGINE_DOMAIN, SIG_NODE, &mcapi_node_attributes,

 &mcapi_parameters, &mcapi_info, &err);

 CHECK_STATUS(err);

 cntrl_endpt = mcapi_endpoint_create(SIG_PORT_CNTRL, &err);

 CHECK_STATUS(err);

 mcapi_endpoint_get_i(ENGINE_DOMAIN, CNTRL_NODE, CNTRL_PORT_SIG,

 &cntrl_remote_endpt, &r1, &err);

 CHECK_STATUS(err);

 // wait on the remote endpoint

 mcapi_wait(&r1, &size, timeout, &err);

 CHECK_STATUS(err);

 // NOTE – connection handled by control task

 // open the channel

 mcapi_pktchan_send_open_i(&cntrl_chan, cntrl_endpt, &r1, &err);

 CHECK_STATUS(err);

 // wait on the open

 mcapi_wait(&r1, &size, timeout, &err);

 CHECK_STATUS(err);

 // All boostrap is finished, now begin processing

 while (1) {

 // Read sensor & process signal

 SIG_DATA sDat; // populate this with results

 // send the data to the control process

 mcapi_pktchan_send(cntrl_chan, &sDat, sizeof(sDat), &err);

 CHECK_STATUS(err);

 }

}

/*

 * MCAPI 2.000 Automotive Use Case

 * tpu_task.c

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 120 of 169

 *

 */

#include "mcapi.h"

#include "automotive.h"

//

// The TPU task

//

void TPU_Task() {

 char* sMem;

 size_t msgSize;

 size_t nSize;

 mcapi_endpoint_t cntrl_endpt, cntrl_remote_endpt;

 mcapi_sclchan_send_hndl_t cntrl_chan;

 mcapi_request_t r1;

 mcapi_status_t err;

 mcapi_timeout_t timeout = 500;

 mcapi_node_attributes_t mcapi_node_attributes;

 mcapi_param_t mcapi_parameters;

 mcapi_info_t mcapi_info;

 // init node attributes

 mcapi_node_init_attributes(&mcapi_node_attributes, &err);

 // init the system

 mcapi_initialize(ENGINE_DOMAIN, SIG_NODE, &mcapi_node_attributes,

 &mcapi_parameters, &mcapi_info, &err);

 CHECK_STATUS(err);

 cntrl_endpt = mcapi_endpoint_create(TPU_PORT_CNTRL, &err);

 CHECK_STATUS(err);

 mcapi_endpoint_get_i(ENGINE_DOMAIN, CNTRL_NODE, CNTRL_PORT_TPU,

 &cntrl_remote_endpt, &r1, &err);

 CHECK_STATUS(err);

 // wait on the remote endpoint

 mcapi_wait(&r1, &nSize, timeout, &err);

 CHECK_STATUS(err);

 // now get the shared mem ptr

 mcapi_msg_recv(cntrl_endpt, &sMem, SHMEM_SIZE, &msgSize, &err);

 CHECK_MEM(sMem);

 CHECK_STATUS(err);

 // NOTE – connection handled by control task

 // open the channel

 mcapi_sclchan_send_open_i(&cntrl_chan, cntrl_endpt, &r1, &err);

 CHECK_STATUS(err);

 // wait on the open

 mcapi_wait(&r1, NULL,timeout, &err);

 CHECK_STATUS(err);

 // ALL bootstrapping is finished, begin processing

 while (1) {

 // do something that updates shared mem

 sMem[0] = 1;

 // send a scalar flag to cntrl process

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 121 of 169

 // indicating sMem has been updated

 mcapi_sclchan_send_uint8(cntrl_chan, (mcapi_uint8_t) 1, &err);

 CHECK_STATUS(err);

 }

}

5.3.8.2 Changes Required to Port to New Multicore Devices

To map this code to additional CPUs, the only change required is in the constant definitions for node
and port numbers in the creation of endpoints.

5.4 Multimedia Processing Use Cases

Multimedia processing includes coding and decoding between various audio and video formats.
Applications range from low-power mobile devices such as cell phones, with limited resolution and audio
quality, to set-top-boxes and HDTV with extremely demanding performance requirements. The following
will review some of the use cases and communications characteristics for the multimedia application
domain.

5.4.1 Characteristics

5.4.1.1 Simple Scenario

Figure 6 shows a simple multicore multimedia architecture. In this scenario, a multicore processor is
executing a multimedia application, which is accelerated by a DSP integrated into the multicore device.
The application has some data (for example, a video frame encoded in the MPEG4 format), and uses
the DSP to decode into an image suitable for display. The data is moved (at least conceptually) to the
DSP, the DSP processing runs, and the data is moved back to the general-purpose processor (GPP).

ARM (e.g.) User Mode

Network on Chip (NoC)

DSP Acceleration

DSP

Processing

ARM (e.g.) Kernel, e.g. Linux, Symbian

Multimedia Application

Figure 6. Simple Multimedia Scenario

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 122 of 169

Despite the simplicity of the above scenario, a number of characteristics are illustrated:

Characteristic 1: Heterogeneous Processors

The DSP and GPP have different instruction sets and potentially different data representations. The
accelerators are typically 16-, 24-, or 32-bit special-purpose devices. The accelerators may have limited
code and data spaces. For example, total DSP code space for the application, operating system and
communication infrastructure may be under 64K instruction words. In order to save room for
applications, the communication-infrastructure code footprint is ideally quite small (e.g., less than 1K
VLIW instruction words). The communication data footprint is of the same magnitude.

There seems to be a trend towards 32-bit processing and less-constrained acceleration devices in the
future, although this is not altogether clear, in particular for low-power mobile devices.

In the example, the application is executing in user mode on a general-purpose operating system such
as Linux. Other operating systems such as QNX Neutrino, VxWorks, or WinCE may be used. The DSP
is running potentially another standard operating system, or a home-grown operating system, or
perhaps in a bare metal environment with no operating system.

Characteristic 2: Heterogeneous Communication Infrastructure

Figure 6 shows a network on-chip connection between the GPP (in this example an ARM processor)
and DSP. This may range from a simple bus to a well-designed network-on-chip infrastructure.
However, (and perhaps more typically today), this could be an ad-hoc collection of buses and bridges,
with different DMA engines and other mechanisms for moving data around the system.

Characteristic 3: Heterogeneous Application Environments

Multimedia applications are very complex, and have a number of frameworks such as gstreamer,
DirectShow, MDF, and OpenMax. The communication infrastructure should play well with these
environments.

For example,

Figure 7 shows the OpenMax multimedia framework from the OpenMax specification3. Host-side
communication APIs may already be defined by the framework. The MCAPI communication
infrastructure is more likely suited to the tunneled communication between acceleration components.

3 See http://www.khronos.org/openmax/

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 123 of 169

IL Client

Framework

Component

Multimedia Framework

O
p

e
n

M
a

x
 C

o
re

Source

Component

Host

Component

Accelerator

Component

Sink

Component

IPC IPC

Hardware

Accelerated

Codec

T
u

n
n

e
le

d

C
o

m
m

u
n

ic
a

ti
o

n

T
u

n
n

e
le

d

C
o

m
m

u
n

ic
a

ti
o

n

N
o

n
-T

u
n

n
e

le
d

C
o

m
m

u
n

ic
a

ti
o

n

Framework

Component

Framework

Component

Framework

Component

Figure 7. OpenMax Communication

Characteristic 4: Application Non-Resident Code Size

Due to the large number of standards, encoding formats, processing variants, etc, the non-resident
multimedia code size is quite large (millions of lines of code). This is only the code running on the
accelerators, and it does not include the code on the general-purpose processors. Of course, depending
on the operating mode, only a small subset of this code will be configured and running at a particular
time.

Characteristic 5: Client/Server Communication Pattern

In simple configurations as illustrated in Figure 6, the communication follows a client/server pattern.
However, as we will see shortly, this is not typically the case.

In the simple case, communication may be considered coarse-grained, in that a large chunk of data is
passed to the accelerator (for example, a video frame), and the DSP runs for a relatively long time to
compute the results. Again, this coarse-grained behavior is not always the case, as is described below.

Characteristic 6: Coarse Grain Data Rates and Latencies

For the coarse-grained scenario, data rates and latencies are relatively conservative. Order of
magnitude data sizes are 1K bytes, and rates are under 100 Hz.

Characteristic 7: Potential for Zero Copy

Performance and power are key constraints. Unnecessary data movement and/or processing should be
avoided where possible. Therefore, although Figure 6 shows distinct data buffers on the GPP and DSP
side, in practice the data may reside in a common shared memory. No data is actually copied when
processing control is transferred from the GPP to the DSP and back again.

However, in many cases, the architecture does not have a shared-memory capability, in which case the
data must be moved. Ideally, the communication infrastructure should mask these platform-dependant
constraints, and allow zero copy where supportable by the architecture. This permits portable
application code.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 124 of 169

5.4.1.2 More Complex Scenarios

Figure 8 is a conceptual representation of a more complex scenario. This is motivated by applications
such as H.264 encoding and decoding.

DSP 0

Stream

0.0

Stream

1.0

Stream 0.1

Hardware

Accelerated

ARM (e.g.) User Mode

ARM (e.g.) Kernel, e.g. Linux, Symbian

Network on Chip (NoC)

DSP n

Stream

0.2

Stream

1.0

Multimedia App 1Multimedia App 0

Figure 8. More Complex Scenarios

Characteristic 8: High Processing Rates

The system computation requirements may exceed 100 GOPS/sec. The following characteristic may be
viewed as a corollary:

Characteristic 9: Multi-Stage Processing

Due to extreme compute requirements, no one core can perform all of the processing. Instead,
processing must be split into several stages. Currently, multimedia devices with order-10 cores are
common.

Characteristic 10: Hardware Components

Even when split into multiple stages, computation for a particular stage may exceed the capabilities of a
programmable device. In this case, the processing stage may be implemented in hardware. Therefore,
the communication infrastructure must support communication to and from hardware devices.

Characteristic 11: Trend to Finer-Grained Processing and Communication

Several factors are influencing a trend to finer-grained processing and communication. One factor is the
complexity, change, and customization options of the emerging standards. This requires great flexibility
in the implementation, which in turn favors an approach which decomposes the problem into many
parts, with the option of quickly changing the implementation of the parts.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 125 of 169

A natural fallout of this finer-grained decomposition is the requirement for finer-grained communication
sizes and rates. For example: a processor sends 100 bytes to a hardware block for processing that
takes 100 cycles. However, many different variants and approaches are in active investigation, the
optimal strategy is not clear.

Characteristic 12: Streamed Processing

In a multi-stage configuration, a dataflow or streaming style of computation may be more appropriate.
Depending on the granularity of the decomposition, the tokens exchanged between stages may be large
(e.g., video frames), down to individual data values.

Characteristic 13: Multiple Flows

In many cases, multiple flows must be supported. For example, one or more audio streams, the main
video stream, picture-in-picture streams, etc.

Characteristic 14: Dynamic Operation

Multimedia devices are increasingly dynamic. This includes many operating modes (voice calls, digital
still camera, video reception and transmission, audio playback and record, etc). Arbitrary subsets of
these operating modes may be selected for simultaneous operation by the user at fairly fine time-scales
(e.g., in the order of seconds). Within a mode, operation may be dynamic at even finer time scales. For
example, packets from a wireless connection may arrive in bursts.

Characteristic 15: Non-Deterministic Communication Rates

In many cases, the amount of data consumed and produced by a processing stage may not be
deterministic, resulting in variable communication rates.

Characteristic 16: Low Power Operation

Power is a central concern for mobile devices. Components must be switched off or moved to lower
voltage/operating frequency depending on system load. Computation occasionally must be redistributed
over the available resources in order to optimize power consumption.

Characteristic 17: Emergent System-Level Properties and Problems

Due to the complexity of the device and the unintended coupling of components, multimedia devices
may exhibit difficult-to-understand emergent properties. For example, the system may deadlock,
overflow buffers, miss deadlines, or provide bursty output, etc. Mechanisms to deal with these problems
are very desirable.

Characteristic 18: Quality of Service

Device operation must meet quality-of-service constraints (processing latency, throughput, jitter, etc).
Ideally, the communications infrastructure should support this. Due to high-performance requirements,
parts of this infrastructure may be in hardware.

Characteristic 19: Security

Multimedia flows have a strong security requirement. It may be required to prevent access to decoded
data (for example), even if the operating system(s) have been compromised.

5.4.1.3 Metrics

Table 1 summarizes some of the quantitative characteristics of the multimedia application domain.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 126 of 169

Table 1. Characteristics of the Multimedia Application Domain

Attribute Value (ranges) Notes

Communication code size
footprint on accelerators

8 K bytes Becoming less constrained in the future

Communication data size
footprint

8 K bytes Becoming less constrained in the future

Non-resident code size millions of lines of
code

Increasing in the future

Number of processors order 10

Hardware accelerators under 10 Different accelerators in high-end systems

Communication sizes 1K to under 100
bytes

Trend to finer-grain

Communication latency 10 mSec to under 1
uSec

Trend to finer-grain in future

5.4.2 Key Functionality Requirements

Table 2 summarizes the key requirements of multimedia devices and comments upon the ability MCAPI
to meet the requirement.

Table 2. Multimedia Derived Requirements

Description Derived From MCAPI

Low footprint on constrained devices (code and data size) Characteristic 1 Yes

Framework for heterogeneous data types Characteristic 1 Yes

Framework for complex transport configuration, quality of
service, message delivery semantics and queuing policies
(FIFO, most recent only, etc)

Characteristic 2 Some, others
can be built on

top.

Minimal assumptions about operating environment, and
services required

 Characteristic 3 Yes

No unnecessary data movement if architecture has
supporting features (e.g., shared memory)

Characteristic 7 Yes, zero copy
functionality

Allow direct binding to hardware, allowing end-to-end
message delivery rates in the order of 100 cycles

Characteristic 8
Characteristic 9
Characteristic 10
Characteristic 11

Yes, no MCAPI
feature prevents

it

Framework for word-by-word message send/receive Characteristic 8
Characteristic 9
Characteristic 10
Characteristic 11
Characteristic 12

Yes

Allow blocking and non-blocking operations Characteristic 3 Yes

Provide message matching framework, to allow selection of
messages of particular type, priority, deadline, etc

Characteristic 18 No, can be built
on top of
MCAPI.

Allow multi-drop messages. E.g., potential for >1 senders to
queuing point, >1 readers

Characteristic 16
Characteristic 18

No, can be built
on top of
MCAPI.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 127 of 169

5.4.3 Pseudocode Example

The pseudocode scenario contains the execution of a DSP algorithm, such as a FIR filter, on a
multicore processor system containing a general-purpose processor (GPP) and DSP. The high-level
steps are:

1. Initialize communication channels between processors.

2. GPP sends data for processing to DSP.

3. GPP sends code to execute to DSP

4. GPP signals for the DSP to begin execution.

5. GPP retrieves processed data from DSP

/*

 * MCAPI 2.000 Multimedia Use Case

 * shared.h

 *

 */

#ifndef SHARED_H_

#define SHARED_H_

#define CHECK_STATUS(status)

/* Shared Header File, shared.h */

enum {

 DSP_READY,

 DSP_DATA,

 DSP_CODE,

 DSP_TERMINATE,

 DSP_EXECUTE,

 COMPLETED

};

#define DOMAIN_0 0

#define PORT_COMMAND 0

#define PORT_DATA 1

#define PORT_DATA_RECV 2

#endif /* SHARED_H_ */

/*

 * MCAPI 2.000 Multimedia Use Case

 * gp_proc.c

 *

 */

/* General Purpose Processor Code */

#include "shared.h"

#include "mcapi.h"

/* Predefined Node numbering */

#define GPP_1 0 /* 0-63 reserved for homogenous MC */

#define DSP_1 64 /* 64+ used for DSP nodes */

/* Predefined Port numbering */

#define PORT_COMMAND 0

#define PORT_DATA 1

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 128 of 169

#define PORT_DATA_REC 2

mcapi_endpoint_t command_endpoint;

mcapi_endpoint_t data_endpoint;

mcapi_endpoint_t remote_command_endpoint;

mcapi_endpoint_t remote_data_endpoint;

mcapi_endpoint_t data_recv_endpoint;

mcapi_endpoint_t remote_data_recv_endpoint ;

mcapi_pktchan_send_hndl_t data_chan;

mcapi_sclchan_send_hndl_t command_chan;

mcapi_pktchan_recv_hndl_t data_recv_chan;

void *data;

int data_size;

void *code;

int code_size;

void initialize_comms()

{

 mcapi_node_t gp_node = 0;

 mcapi_node_attributes_t mcapi_node_attributes;

 mcapi_param_t mcapi_parameters;

 mcapi_info_t mcapi_info;

 mcapi_status_t status;

 mcapi_request_t request;

 mcapi_timeout_t timeout = 500;

 mcapi_node_init_attributes(&mcapi_node_attributes, &status);

 mcapi_initialize(DOMAIN_0, gp_node, &mcapi_node_attributes,

 &mcapi_parameters, &mcapi_info, &status);

 CHECK_STATUS(status);

 command_endpoint = mcapi_endpoint_create(PORT_COMMAND, & status);

 CHECK_STATUS(status);

 data_endpoint = mcapi_endpoint_create(PORT_DATA, & status);

 CHECK_STATUS(status);

 data_recv_endpoint = mcapi_endpoint_create(PORT_DATA_RECV, & status);

 CHECK_STATUS(status);

 remote_command_endpoint = mcapi_endpoint_get(DOMAIN_0, DSP_1,

 PORT_COMMAND, timeout, &status);

 CHECK_STATUS(status);

 remote_data_endpoint = mcapi_endpoint_get(DOMAIN_0, DSP_1, PORT_DATA,

 timeout, &status);

 CHECK_STATUS(status);

 remote_data_recv_endpoint = mcapi_endpoint_get(DOMAIN_0, DSP_1,

 PORT_DATA_RECV, timeout, &status);

 CHECK_STATUS(status);

 mcapi_pktchan_connect_i(data_endpoint, remote_data_endpoint, &request,

 &status);

 CHECK_STATUS(status);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 129 of 169

 mcapi_sclchan_connect_i(command_endpoint, remote_command_endpoint,

 &request, &status)

 CHECK_STATUS(status);

 mcapi_pktchan_connect_i(data_recv_endpoint, remote_data_recv_endpoint,

 &request, &status);

 CHECK_STATUS(status);

 mcapi_pktchan_send_open_i(&data_chan, data_endpoint, &request,

 &status);

 CHECK_STATUS(status);

 mcapi_sclchan_send_open_i(&command_chan, command_endpoint, &request,

 &status);

 CHECK_STATUS(status);

 mcapi_pktchan_recv_open_i(&data_recv_chan, data_recv_endpoint,

 &request, &status);

 CHECK_STATUS(status);

}

void send_data(void *data, int size)

{

 mcapi_status_t status;

 mcapi_pktchan_send(data_chan, data, size, &status);

 CHECK_STATUS(status);

}

void send_dsp_cmd(int cmd)

{

 mcapi_status_t status;

 mcapi_sclchan_send_uint32(command_chan, cmd, &status);

 CHECK_STATUS(status);

}

void read_data(void **dst, int *size)

{

 mcapi_status_t status;

 mcapi_pktchan_recv(data_recv_chan, dst, (size_t)size, &status);

 CHECK_STATUS(status);

}

void shutdown_comms()

{

 mcapi_status_t status;

 mcapi_request_t request;

 mcapi_pktchan_recv_close_i(data_recv_chan, &request, &status);

 CHECK_STATUS(status);

 mcapi_pktchan_send_close_i(data_chan, &request, &status);

 CHECK_STATUS(status);

 mcapi_sclchan_send_close_i(command_chan, &request, &status);

 CHECK_STATUS(status);

 mcapi_endpoint_delete(command_endpoint, &status)

 CHECK_STATUS(status);

 mcapi_endpoint_delete(data_endpoint, &status)

 CHECK_STATUS(status);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 130 of 169

 mcapi_endpoint_delete(data_recv_endpoint, &status)

 CHECK_STATUS(status);

}

void *allocate(int size) {

 /* Routine to allocate memory */

}

int perform_multimedia_function(void *code, int code_size, void *data,

 int data_size)

{

 void* result;

 int size = 0;

 initialize_comms();

 send_dsp_cmd(DSP_DATA);

 send_data(data, data_size);

 send_dsp_cmd(DSP_CODE);

 send_data(code, code_size);

 send_dsp_cmd(DSP_EXECUTE);

 read_data(&result, &size);

 send_dsp_cmd(DSP_TERMINATE);

 shutdown_comms();

 return COMPLETED;

}

/*

 * MCAPI 2.000 Multimedia Use Case

 * dsp.c

 *

 */

/* DSP Code */

#include "shared.h"

#include "mcapi.h"

mcapi_endpoint_t dsp_command_endpoint;

mcapi_endpoint_t dsp_data_endpoint;

mcapi_endpoint_t dsp_data_send_endpoint;

mcapi_pktchan_recv_hndl_t data_chan;

mcapi_sclchan_recv_hndl_t command_chan;

mcapi_pktchan_send_hndl_t data_send_chan;

void *buffer;

void *code_buffer;

void *data_buffer;

size_t code_size;

size_t data_size;

void *result_buffer;

int result_size;

int dsp_initialize()

{

 mcapi_node_t dsp_node = 0;

 mcapi_node_attributes_t mcapi_node_attributes;

 mcapi_param_t mcapi_parameters;

 mcapi_info_t mcapi_info;

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 131 of 169

 mcapi_status_t status;

 mcapi_request_t request;

 mcapi_node_init_attributes(&mcapi_node_attributes, &status);

 mcapi_initialize(DOMAIN_0, dsp_node, &mcapi_node_attributes,

 &mcapi_parameters, &mcapi_info, &status);

 CHECK_STATUS(status);

 dsp_command_endpoint = mcapi_endpoint_create(PORT_COMMAND, &status);

 CHECK_STATUS(status);

 dsp_data_endpoint = mcapi_endpoint_create(PORT_DATA, &status);

 CHECK_STATUS(status);

 dsp_data_send_endpoint = mcapi_endpoint_create(PORT_DATA_RECV,

 &status);

 CHECK_STATUS(status);

 mcapi_pktchan_recv_open_i(&data_chan, dsp_data_endpoint, &request,

 &status);

 CHECK_STATUS(status);

 mcapi_sclchan_recv_open_i(&command_chan, dsp_command_endpoint,

 &request, &status);

 CHECK_STATUS(status);

 mcapi_pktchan_send_open_i(&data_send_chan, dsp_data_send_endpoint,

 &request, &status);

 CHECK_STATUS(status);

 return status;

}

int dsp_shutdown()

{

 mcapi_status_t status;

 mcapi_request_t request;

 mcapi_pktchan_release(data_buffer, &status);

 mcapi_pktchan_release(code_buffer, &status);

 mcapi_pktchan_recv_close_i(data_chan, &request, &status);

 CHECK_STATUS(status);

 mcapi_sclchan_recv_close_i(command_chan, &request, &status);

 CHECK_STATUS(status);

 mcapi_pktchan_send_close_i(data_send_chan, &request, &status);

 CHECK_STATUS(status);

 mcapi_endpoint_delete(dsp_command_endpoint, &status);

 CHECK_STATUS(status);

 mcapi_endpoint_delete(dsp_data_endpoint, &status);

 CHECK_STATUS(status);

 mcapi_endpoint_delete(dsp_data_send_endpoint, &status);

 CHECK_STATUS(status);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 132 of 169

 return status;

}

int receive_dsp_cmd()

{

 mcapi_uint32_t cmd;

 mcapi_status_t status;

 cmd = mcapi_sclchan_recv_uint32(command_chan, &status);

 CHECK_STATUS(status);

}

int dsp_command_loop()

{

 int command = DSP_READY;

 mcapi_status_t status;

 dsp_initialize();

 while (command != DSP_TERMINATE) {

 switch (command) {

 case DSP_DATA:

 mcapi_pktchan_recv(data_chan, &data_buffer, &data_size, &status);

 CHECK_STATUS(status);

 break;

 case DSP_CODE:

 mcapi_pktchan_recv(data_chan, &code_buffer, &code_size, &status);

 CHECK_STATUS(status);

 /* Copy code to from buffer to local execute memory */

 break;

 case DSP_EXECUTE:

 /* Tell DSP to Execute – Assume code writes to result_buffer */

 mcapi_pktchan_send(data_send_chan, result_buffer, result_size,

 &status);

 CHECK_STATUS(status);

 break;

 case DSP_TERMINATE:

 dsp_shutdown();

 break;

 default:

 break;

 }

 command = receive_dsp_cmd();

 }

}

5.5 Packet Processing

This example presents the typical startup and inner loop of a packet processing application. There are
two source files: load_balancer.c and worker.c. The main entry point is in load_balancer.c.

The program begins in the load balancer, which spawns a set of worker processes and binds channels
to them. Each worker has two channel connections to the load balancer: a packet channel for work
requests and a scalar channel for acks. When work arrives on the packet channel from the load
balancer, the worker processes it and then sends back an ack to the load balancer. The load balancer
will not send new work to a worker unless an ack word is available.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 133 of 169

This example uses both packet channels and scalar channels. Scalar channels are used for acks from
the workers to the load balancer, because each ack is a single word and performance will be better
without the packetization overhead. Packet channels are used to send work requests to the workers,
because each work request is a structure containing multiple fields. The example also shows how to use
both statically named and dynamic (anonymous) endpoints. It uses the endpoint creation functions
mcapi_endpoint_create(), mcapi_create_anonymous_endpoint(), and

mcapi_endpoint_get().

On architectures with hardware support for scalars, it would make more sense to use scalar channels
for the work requests also. Work requests are usually composed of only a few words, so they can be
sent as individual words. More importantly, the load balancer is the rate-limiting step in this program; we
can always add more workers but they are useless if the load balancer cannot feed them. Since the
load balancer is limited by communication overhead, hardware-accelerated scalar channels could
potentially improve overall performance if the overhead of a packet-channel send is greater than the
comparable scalar-channel sends.

5.5.1 Packet Processing Code

5.5.1.1 common.h

/*

 * MCAPI 2.000 Packet Processing Use Case

 * common.h

 *

 */

// Header file containing a couple of declarations that are shared

// between the load balancer and the worker.

#ifndef COMMON_H_

#define COMMON_H_

#include <stdio.h>

#include <stdlib.h>

extern char* mcapi_strerror(int s);

enum {

 WORKER_REQUEST_PORT_ID,

 WORKER_ACK_PORT_ID

};

#define DOMAIN_0 0

#define NODE_LOAD_BALANCER 0

#define CHECK_STATUS(S) do { \

 if (S != MCAPI_SUCCESS) { \

 printf("Failed with MCAPI status %d (%s)\n", S, mcapi_strerror(S)); \

 exit(1); \

 }} while (0)

typedef struct{

 unsigned char is_valid;

 int worker;

} PacketInfo;

#endif /* COMMON_H_ */

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 134 of 169

/*

 * MCAPI 2.000 Packet Processing Use Case

 * load_balancer.c

 *

 */

#include "common.h"

#include "mcapi.h"

#include <stdbool.h>

extern void spawn_new_thread(void* funct, int worker_id);

extern void worker_spawn_function(int worker_num);

extern int get_next_packet(PacketInfo* packet_info);

extern void drop_packet(PacketInfo* packet_info);

// We will have four worker processes

#define NUM_WORKERS 4

// An array of packet channel send ports for sending work descriptors

// to each of the worker processes.

mcapi_port_t work_requests_out_port[NUM_WORKERS];

// An array of scalar channel receive ports for getting acks back from

// the workers.

mcapi_port_t acks_in_port[NUM_WORKERS];

mcapi_pktchan_send_hndl_t work_requests_out_hndl[NUM_WORKERS];

mcapi_pktchan_recv_hndl_t acks_in_hndl[NUM_WORKERS];

// function declarations

void create_and_init_workers(void);

void dispatch_packets(void);

void shutdown_lb(void);

// The entrypoint for this packet processing application.

int main(void)

{

 mcapi_node_attributes_t mcapi_node_attributes;

 mcapi_param_t mcapi_parameters;

 mcapi_info_t mcapi_info;

 mcapi_status_t status;

 mcapi_node_init_attributes(&mcapi_node_attributes, &status);

 mcapi_initialize(DOMAIN_0, NODE_LOAD_BALANCER, &mcapi_node_attributes,

 &mcapi_parameters, &mcapi_info, &status);

 create_and_init_workers();

 dispatch_packets();

 shutdown_lb();

 return 0;

}

void create_and_init_workers()

{

 int i;

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 135 of 169

 mcapi_request_t request;

 for (i = 0; i < NUM_WORKERS; i++)

 {

 mcapi_timeout_t timeout = 500;

 mcapi_status_t status;

 // Spawn a new thread; pass parameters so the new thread will execute

 // worker_spawn_function(bootstrap_endpoint)

 spawn_new_thread(&worker_spawn_function, i);

 int worker_node = i + 1;

 // Create a send endpoint to send packets to the worker; get the

 // worker's receive endpoint via mcapi_endpoint_get()

 mcapi_endpoint_t work_request_out_endpoint =

 mcapi_endpoint_create(MCAPI_PORT_ANY, &status);

 CHECK_STATUS(status);

 mcapi_endpoint_t work_request_remote_endpoint =

 mcapi_endpoint_get(DOMAIN_0, worker_node,

 WORKER_REQUEST_PORT_ID, timeout, &status);

 CHECK_STATUS(status);

 // Bind the channel and open our local send port.

 mcapi_pktchan_connect_i(work_request_out_endpoint,

 work_request_remote_endpoint, &request, &status);

 CHECK_STATUS(status);

 mcapi_pktchan_send_open_i(&work_requests_out_hndl[i],

 work_request_out_endpoint, &request, &status);

 CHECK_STATUS(status);

 // Repeat the process to create an ack scalar channel from the

 // worker back to us.

 mcapi_endpoint_t ack_in_endpoint = mcapi_endpoint_create(MCAPI_PORT_ANY,

 &status);

 CHECK_STATUS(status);

 mcapi_endpoint_t ack_remote_endpoint =

 mcapi_endpoint_get(DOMAIN_0, worker_node, WORKER_ACK_PORT_ID,

 timeout, &status);

 CHECK_STATUS(status);

 mcapi_sclchan_connect_i(ack_remote_endpoint, ack_in_endpoint, &request,

 &status);

 CHECK_STATUS(status);

 mcapi_sclchan_recv_open_i(&acks_in_hndl[i], ack_in_endpoint, &request,

 &status);

 CHECK_STATUS(status);

 }

}

void dispatch_packets()

{

 PacketInfo packet_info;

 mcapi_status_t status;

 while(get_next_packet(&packet_info))

 {

 // Because we maintain "session state" across packets, each

 // incoming packet is associated with a particular worker.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 136 of 169

 int worker = packet_info.worker;

 // Each worker sends back acks when it is ready for more work.

 if (mcapi_sclchan_available(acks_in_hndl[worker], &status))

 {

 // An ack is available; pull it off and send more work

 int unused_result = mcapi_sclchan_recv_uint8(acks_in_hndl[worker],

 &status);

 mcapi_pktchan_send(work_requests_out_hndl[worker], &packet_info,

 sizeof(packet_info), &status);

 CHECK_STATUS(status);

 }

 else

 {

 // No ack available; drop the packet (or queue, or do some other

 // form of exception processing) and move on.

 drop_packet(&packet_info);

 }

 }

}

void shutdown_lb()

{

 mcapi_status_t status;

 mcapi_request_t request;

 int i;

 // Shutdown each worker in turn

 for(i = 0; i < NUM_WORKERS; i++)

 {

 // Send an “invalid” packet to trigger worker shutdown

 PacketInfo invalid_work;

 invalid_work.is_valid = false;

 mcapi_pktchan_send(work_requests_out_hndl[i], &invalid_work,

 sizeof(invalid_work), &status);

 CHECK_STATUS(status);

 // Close our ports; don't worry about errors (what would we do?)

 mcapi_pktchan_send_close_i(work_requests_out_hndl[i], &request,

 &status);

 mcapi_sclchan_recv_close_i(acks_in_hndl[i], &request, &status);

 }

}

/*

 * MCAPI 2.000 Packet Processing Use Case

 * worker.c

 *

 */

#include "common.h"

#include "mcapi.h"

#include <stdbool.h>

void some_function_or_another(PacketInfo* packet_info);

// Local port for incoming work requests from the load balancer. We

// use a packet channel because each work request is a structure with

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 137 of 169

// multiple fields specifying the work to be done.

mcapi_port_t work_request_in;

// Local port for outgoing acks to the load balancer. We use a scalar

// channel because each ack is a single word indicating the number of

// work items that have been completed.

mcapi_port_t ack_out;

// a local buffer for use by the incoming packet channel

char work_channel_buffer[1024];

// function declarations

void bind_channels(void);

void do_work(void);

void shutdown(void);

// The function called within each new worker thread. This function

// binds takes an endpoint in the load balancer as its parameter so

// that it can communicate with the load balancer and create channels

// between the worker and the load balancer.

void worker_spawn_function(int worker_num)

{

 mcapi_node_attributes_t mcapi_node_attributes;

 mcapi_param_t mcapi_parameters;

 mcapi_info_t mcapi_info;

 mcapi_status_t status;

 mcapi_node_init_attributes(&mcapi_node_attributes, &status);

 mcapi_initialize(DOMAIN_0, (1 + worker_num), &mcapi_node_attributes,

 &mcapi_parameters, &mcapi_info, &status);

 bind_channels();

 do_work();

 shutdown();

}

void bind_channels()

{

 mcapi_status_t status;

 mcapi_request_t request;

 mcapi_pktchan_recv_hndl_t work_request_in;

 mcapi_sclchan_send_hndl_t ack_out;

 // Create a packet receive endpoint for incoming work requests; use

 // a static port number so that load balancer can look it up via

 // mcapi_endpoint_get().

 mcapi_endpoint_t work_request_in_endpoint =

 mcapi_endpoint_create(WORKER_REQUEST_PORT_ID, &status);

 CHECK_STATUS(status);

 // The load balancer will bind a channel to that endpoint; we use

 // the open function to synchronize and initialize our local packet

 // receive port.

mcapi_pktchan_recv_open_i(&work_request_in, work_request_in_endpoint,

 &request, &status);

 CHECK_STATUS(status);

 // Repeat the process to create a scalar channel from us back to the

 // load balancer.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 138 of 169

 mcapi_endpoint_t ack_out_endpoint =

 mcapi_endpoint_create(WORKER_ACK_PORT_ID, &status);

 CHECK_STATUS(status);

 mcapi_sclchan_send_open_i(&ack_out, ack_out_endpoint, &request, &status);

 CHECK_STATUS(status);

}

void do_work()

{

 mcapi_status_t status;

 size_t size;

 // The first thing we do is send an ack so that the load balancer

 // knows we're ready for work.

 mcapi_sclchan_send_uint8(ack_out, 1 /* Any value would do. */, &status);

 while (1)

 {

 // receive a work request from the load balancer

 PacketInfo* work_info;

 mcapi_pktchan_recv(work_request_in, (void*)&work_info, &size, &status);

 CHECK_STATUS(status);

 // if the work request is marked “invalid”, we're done

 if (work_info->is_valid == false)

 {

 break;

 }

 // do the work

 some_function_or_another(work_info);

 // we're done; return the buffer and send an ack

 mcapi_pktchan_release(work_info, &status);

 mcapi_sclchan_send_uint8(ack_out, 1 /* Any value would do. */, &status);

 }

}

void shutdown()

{

 mcapi_status_t status;

 mcapi_request_t request;

 // close our channels

 mcapi_pktchan_recv_close_i(work_request_in, &request, &status);

 mcapi_sclchan_send_close_i(ack_out, &request, &status);

}

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 139 of 169

6. Appendix A: Acknowledgements

The MCAPI working group would like to acknowledge the significant contributions of the following
people in the creation of this API specification:

Working Group

Ajay Kamalvanshi, Nokia Siemens Networks

Anant Agarwal, Tilera

Sven Brehmer, PolyCore Software (chair)

Max Domeika, Intel

Peter Flake, Imperas

Steven Furr, Freescale Semiconductor, Inc.

Masaki Gondo, eSOL

Patrick Griffin, Tilera

Jim Holt, Freescale Semiconductor, Inc.

Rob Jackson, Imperas

Kevin Kissell, MIPS

Maarten Koenig, Wind River

Markus Levy, Multicore Association

Charles Pilkington, ST Micro

Andrew Richards, Codeplay

Colin Riley, Codeplay

Frank Schirrmeister, Imperas

The MCAPI working group also would like to thank the external reviewers who provided input and
helped us to improve the specification below is a partial list of the external reviewers (some preferred to
not be mentioned).

Reviewers

David Addison, ST Micro

Sterling Augustine, Tensilica

Badrinath Dorairajan, Aricent

Marc Gauthier, Tensilica

David Heine, Tensilica

Dominic Herity, Redplain Technology

Arun Joseph, IBM

Tammy Leino, Mentor Graphics

Michael Kardonik, Freescale Semiconductor, Inc.

Anjna Khanna, Cadence Design Systems

Grant Martin, Tensilica

Tim Mattson, Intel

Dror Maydan, Tensilica

Girish Mundada, Micronas

Karl Mörner, Enea

Emeka Nwafor, Zeligsoft

Don Padgett, Padgett Computing

Ola Redell, Enea

Michele Reese, Freescale Semiconductor, Inc.

Greg Regnier, Intel

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 140 of 169

Vedvyas Shanbhogue, Intel

Patrik Strömblad, Enea

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 141 of 169

7. Appendix B: Header Files

7.1 mca.h

/*

 * Copyright (c) 2011, The Multicore Association All rights reserved.

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are

 * met:

 *

 * (1) Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * (2) Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 *

 * (3) Neither the name of the Multicore Association nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * mca.h

 *

 * Version 2.015, March 2011

 *

 */

#ifndef MCA_H

#define MCA_H

/*

 * The mca_impl_spec.h header file is vendor/implementation specific,

 * and should contain declarations and definitions specific to a particular

 * implementation.

 *

 * This file must be provided by each implementation. It is recommended

 * that these types be either pointers or 32 bit scalars, allowing simple

 * arithmetic equality comparison (a == b).

 * Implementers may which of these type are used.

 *

 * It MUST contain type definitions for the following types.

 *

 * mca_request_t;

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 142 of 169

 *

 */

#include "mca_impl_spec.h"

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

/*

 * MCA type definitions

 */

typedef int mca_int_t;

typedef char mca_int8_t;

typedef short mca_int16_t;

typedef int mca_int32_t;

typedef long long mca_int64_t;

typedef unsigned int mca_uint_t;

typedef unsigned char mca_uint8_t;

typedef unsigned short mca_uint16_t;

typedef unsigned int mca_uint32_t;

typedef unsigned long long mca_uint64_t;

typedef unsigned char mca_boolean_t;

typedef unsigned int mca_node_t;

typedef unsigned int mca_status_t;

typedef unsigned int mca_timeout_t;

typedef unsigned int mca_domain_t;

/* Constants */

#define MCA_TRUE 1

#define MCA_FALSE 0

#define MCA_NULL 0 /* MCA Zero value */

#define MCA_INFINITE (~0) /* Wait forever, no timeout */

/* In/out parameter indication macros */

#ifndef MCA_IN

#define MCA_IN const

#endif /* MCA_IN */

#ifndef MCA_OUT

#define MCA_OUT

#endif /* MCA_OUT */

/* Alignment macros */

#ifdef __GNUC__

#define MCA_DECL_ALIGNED __attribute__ ((aligned (32)))

#else

#define MCA_DECL_ALIGNED /* MCA_DECL_ALIGNED alignment macro currently only

 supports GNU compiler */

#endif /* __GNUC__ */

#ifndef MCA_BUF_ALIGN

#define MCA_BUF_ALIGN

#endif

/*

 * MCA organization id's (for assignment of organization specific attribute

 * numbers)

 */

#define MCA_ORG_ID_PSI 0 /* PolyCore Software, Inc. */

#define MCA_ORG_ID_FSL 1 /* Freescale, Inc. */

#define MCA_ORG_ID_MGC 2 /* Mentor Graphics, Corp. */

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 143 of 169

#define MCA_ORG_ID_TBA 3 /* To be assigned */

/* And so forth */

#ifdef __cplusplus

}

#endif /* __cplusplus */

#endif /* MCA_H */

7.2 mcapi.h

/*

 * Copyright (c) 2011, The Multicore Association All rights reserved.

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are

 * met:

 *

 * (1) Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * (2) Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 *

 * (3) Neither the name of the Multicore Association nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * mcapi.h

 *

 * Version 2.015, March 2011

*/

#ifndef MCAPI_H

#define MCAPI_H

#include <stddef.h> /* Required for size_t */

#include "mca.h"

/*

 * The mcapi_impl_spec.h header file is vendor/implementation specific,

 * and should contain declarations and definitions specific to a particular

 * implementation.

 *

 * This file must be provided by each implementation.

 *

 * It MUST contain type definitions for the following types, which must be

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 144 of 169

 * either pointers or 32 bit scalars, allowing simple arithmetic equality

 * comparison (a == b).

 * Implementers may which of these type are used.

 *

 * mcapi_endpoint_t; Note: The endpoint identifier must be

 * topology unique.

 * mcapi_pktchan_recv_hndl_t;

 * mcapi_pktchan_send_hndl_t;

 * mcapi_sclchan_send_hndl_t;

 * mcapi_sclchan_recv_hndl_t;

 *

 *

 * It MUST contain the following definition:

 * mcapi_param_t;

 *

 * It MUST contain the following definitions:

 *

 * Number of MCAPI reserved ports, starting at port 0. Reserved ports can

 * be used for implementation specific purposes.

 *

 * MCAPI_NUM_RESERVED_PORTS 1 Number of reserved ports

 * starting at port 0

 *

 * Implementation defined MCAPI MIN and MAX values.

 *

 * Implementations may parameterize implementation specific max values,

 * smaller that the MCAPI max values. Implementations must specify what

 * those smaller values are and how they are set.

 *

 * MCAPI_MAX_DOMAIN Maximum value for domain

 * MCAPI_MAX_NODE Maximum value for node

 * MCAPI_MAX_PORT Maximum value for port

 * MCAPI_MAX_MESSAGE_SIZE Maximum message size

 * MCAPI_MAX_PACKET_SIZE Maximum packet size

 *

 * Implementations may parameterize implementation specific priority min

 * value and set the number of reserved ports. Implementations must specify

 * what those values are and how they are set.

 *

 * MCAPI_MIN_PORT Minimum value for port

 * MCAPI_MIN_PRORITY Minimum priority value

 *

 */

#include "mcapi_impl_spec.h"

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

/*

 * MCAPI type definitions

 * (Additional typedefs under the attribute and initialization sections

 * below)

 */

typedef mca_int_t mcapi_int_t;

typedef mca_int8_t mcapi_int8_t;

typedef mca_int16_t mcapi_int16_t;

typedef mca_int32_t mcapi_int32_t;

typedef mca_int64_t mcapi_int64_t;

typedef mca_uint_t mcapi_uint_t;

typedef mca_uint8_t mcapi_uint8_t;

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 145 of 169

typedef mca_uint16_t mcapi_uint16_t;

typedef mca_uint32_t mcapi_uint32_t;

typedef mca_uint64_t mcapi_uint64_t;

typedef mca_boolean_t mcapi_boolean_t;

typedef mca_domain_t mcapi_domain_t;

typedef mca_node_t mcapi_node_t;

typedef unsigned int mcapi_port_t; typedef mca_status_t mcapi_status_t;

typedef mca_request_t mcapi_request_t;

typedef mca_timeout_t mcapi_timeout_t;

typedef unsigned int mcapi_priority_t;

/* The following constants are not implementation defined */

#define MCAPI_VERSION 2015 /* Version 2.015 (major #

 + minor # (3-digit)) */

#define MCAPI_TRUE MCA_TRUE

#define MCAPI_FALSE MCA_FALSE

#define MCAPI_NULL MCA_NULL /* MCAPI Zero value */

#define MCAPI_PORT_ANY (~0) /* Create endpoint using

 the next available port */

#define MCAPI_TIMEOUT_INFINITE (~0) /* Wait forever, no timeout */

#define MCAPI_TIMEOUT_IMMEDIATE 0 /* Return immediately, with

 success or failure */

#define MCAPI_NODE_INVALID (~0) /* Return value for invalid

 node */

#define MCAPI_DOMAIN_INVALID (~0) /* Return value for invalid

 domain */

#define MCAPI_RETURN_VALUE_INVALID (~0) /* Invalid return value */

#define MCAPI_MAX_PRORITY 0 /* Maximum priority value */

#define MCAPI_MAX_STATUS_MSG_LEN 32 /* Maximum status code message

 length */

/*

 * MCAPI Status codes

 */

enum mcapi_status_codes {

 MCAPI_SUCCESS = 1, /* Indicates operation was successful */

 MCAPI_PENDING, /* Indicates operation is pending

 without errors */

 MCAPI_TIMEOUT, /* The operation timed out */

 MCAPI_ERR_PARAMETER, /* Incorrect parameter */

 MCAPI_ERR_DOMAIN_INVALID, /* The parameter is not a valid domain

 */

 MCAPI_ERR_NODE_INVALID, /* The parameter is not a valid node */

 MCAPI_ERR_NODE_INITFAILED, /* The MCAPI node could not be

 initialized */

 MCAPI_ERR_NODE_INITIALIZED, /* MCAPI node is already initialized */

 MCAPI_ERR_NODE_NOTINIT, /* The MCAPI node is not initialized */

 MCAPI_ERR_NODE_FINALFAILED, /* The MCAPI could not be finalized */

 MCAPI_ERR_PORT_INVALID, /* The parameter is not a valid port */

 MCAPI_ERR_ENDP_INVALID, /* The parameter is not a valid

 endpoint descriptor */

 MCAPI_ERR_ENDP_EXISTS, /* The endpoint is already created */

 MCAPI_ERR_ENDP_GET_LIMIT, /* Endpoint get reference count is to

 high */

 MCAPI_ERR_ENDP_DELETED, /* The endpoint has been deleted */

 MCAPI_ERR_ENDP_NOTOWNER, /* An endpoint can only be deleted by

 its creator */

 MCAPI_ERR_ENDP_REMOTE, /* Certain operations are only allowed

 on the node local endpoints */

 MCAPI_ERR_ATTR_INCOMPATIBLE, /* Connection of endpoints with

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 146 of 169

 incompatible attributes not allowed

 */

 MCAPI_ERR_ATTR_SIZE, /* Incorrect attribute size */

 MCAPI_ERR_ATTR_NUM, /* Incorrect attribute number */

 MCAPI_ERR_ATTR_VALUE, /* Incorrect attribute value */

 MCAPI_ERR_ATTR_NOTSUPPORTED, /* Attribute not supported by the

 implementation */

 MCAPI_ERR_ATTR_READONLY, /* Attribute is read only */

 MCAPI_ERR_MSG_SIZE, /* The message size exceeds the maximum

 size allowed by the MCAPI

 implementation */

 MCAPI_ERR_MSG_TRUNCATED, /* The message size exceeds the buffer

 size */

 MCAPI_ERR_CHAN_OPEN, /* A channel is open, certain operations

 are not allowed */

 MCAPI_ERR_CHAN_TYPE, /* Attempt to open a packet/scalar

 channel on an endpoint that has been

 connected with a different channel

 type */

 MCAPI_ERR_CHAN_DIRECTION, /* Attempt to open a send handle on a

 port that was connected as a

 receiver, or vice versa */

 MCAPI_ERR_CHAN_CONNECTED, /* A channel connection has already been

 established for one or both of the

 specified endpoints */

 MCAPI_ERR_CHAN_OPENPENDING, /* An open request is pending */

 MCAPI_ERR_CHAN_CLOSEPENDING, /* A close request is pending */

 MCAPI_ERR_CHAN_NOTOPEN, /* The channel is not open (cannot be

 closed) */

 MCAPI_ERR_CHAN_INVALID, /* Argument is not a channel handle */

 MCAPI_ERR_PKT_SIZE, /* The packet size exceeds the maximum

 size allowed by the MCAPI

 implementation */

 MCAPI_ERR_TRANSMISSION, /* Transmission failure */

 MCAPI_ERR_PRIORITY, /* Incorrect priority level */

 MCAPI_ERR_BUF_INVALID, /* Not a valid buffer descriptor */

 MCAPI_ERR_MEM_LIMIT, /* Out of memory */

 MCAPI_ERR_REQUEST_INVALID, /* Argument is not a valid request

 handle */

 MCAPI_ERR_REQUEST_LIMIT, /* Out of request handles */

 MCAPI_ERR_REQUEST_CANCELLED, /* The request was already canceled */

 MCAPI_ERR_WAIT_PENDING, /* A wait is pending */

 MCAPI_ERR_GENERAL, /* To be used by implementations for

 error conditions not covered by the

 other status codes */

 MCAPI_STATUSCODE_END /* This should always be last */

};

/*

 * Node attribute numbers

 *

 */

enum mcapi_node_attribute_numbers {

 MCAPI_NODE_ATTR_TYPE, /* Node type */

 MCAPI_NODE_ATTR_END /* This should always be last */

};

/* MCAPI_NODE_ATTR_TYPE */

typedef mcapi_uint_t mcapi_node_attr_type_t;

/* Node Types */

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 147 of 169

enum mcapi_node_attribute_types {

 MCAPI_NODE_ATTR_TYPE_REGULAR, /* Default - Regular node type */

 MCAPI_NODE_ATTR_TYPE_END /* This should always be last */

};

/*

 * Endpoint attribute numbers

 *

 * Some of the endpoint attributes must have the same value for two

 * endpoints to be connected by a channel. Those attributes are identified

 * below with "Channel compatibility attribute"

 *

 */

enum mcapi_endp_attribute_numbers {

 MCAPI_ENDP_ATTR_MAX_PAYLOAD_SIZE, /* Maximum payload size -

 Channel compatibility attribute

 */

 MCAPI_ENDP_ATTR_BUFFER_TYPE, /* Buffer type, FIFO -

 Channel compatibility attribute

 */

 MCAPI_ENDP_ATTR_MEMORY_TYPE, /* Shared/local (0-copy),

 blocking or non-blocking on

 limit - Channel compatibility

 attribute */

 MCAPI_ENDP_ATTR_NUM_PRIORITIES, /* Number of priorities -

 Channel compatibility attribute

 */

 MCAPI_ENDP_ATTR_PRIORITY, /* Priority on connected

 endpoint - Channel

 compatibility attribute */

 MCAPI_ENDP_ATTR_NUM_SEND_BUFFERS, /* Number of send buffers at

 the current endpoint priority

 level */

 MCAPI_ENDP_ATTR_NUM_RECV_BUFFERS, /* Number of available receive

 buffers */

 MCAPI_ENDP_ATTR_STATUS, /* Endpoint status, connected,

 open etc. */

 MCAPI_ENDP_ATTR_TIMEOUT, /* Timeout */

 MCAPI_ENDP_ATTR_END /* This should always be last */

};

/* MCAPI endpoint Attributes

 * Implementations may designate some or all attributes as read-only

 *

 */

/* MCAPI_ENDP_ATTR_MAX_PAYLOAD_SIZE */

typedef mcapi_int_t mcapi_endp_attr_max_payload_size_t; /* Implementation

 defined default

 value */

/* MCAPI_ENDP_ATTR_BUFFER_TYPE */

typedef mcapi_uint_t mcapi_endp_attr_buffer_type_t;

/* Buffer Types */

enum mcapi_buffer_type {

 MCAPI_ENDP_ATTR_FIFO_BUFFER /* Default */

};

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 148 of 169

/* MCAPI_ENDP_ATTR_MEMORY_TYPE */

typedef mcapi_uint_t mcapi_endp_attr_memory_type_t;

/*

 * The type refers to both the memory's locality, local, shared and remote.

 */

/* MCAPI Attribute Memory Locality Types */

enum mcapi_memory_type {

 MCAPI_ENDP_ATTR_LOCAL_MEMORY, /* Zero copy operations not

 possible - Default */

 MCAPI_ENDP_ATTR_SHARED_MEMORY, /* The user buffer provided

 by the sender is a shared

 memory buffer, zero copy

 possible */

 MCAPI_ENDP_ATTR_REMOTE_MEMORY

};

/* MCAPI_ENDP_ATTR_NUM_PRIORITIES */

typedef mcapi_int_t mcapi_endp_attr_num_priorities_t; /* Implementation

 defined default

 value */

/* MCAPI_ENDP_ATTR_PRIORITY */

typedef mcapi_uint_t mcapi_endp_attr_priority_t; /* A lower number

 means higher

 priority. A value

 of

 MCAPI_MAX_PRORITY

 (0) denotes the

 highest priority

 MCAPI_MAX_PRORITY -

 Default */

/* MCAPI_ENDP_ATTR_NUM_SEND_BUFFERS */

typedef mcapi_int_t mcapi_endp_attr_num_send_buffers_t; /* Implementation

 defined default

 value */

/* MCAPI_ENDP_ATTR_NUM_RECV_BUFFERS */

typedef mcapi_uint_t mcapi_endp_attr_num_recv_buffers_t; /* Number of

 receive

 buffers

 available,

 can for example

 be used for

 throttling.

 Implementation

 defined default

 value */

/* MCAPI_ENDP_ATTR_STATUS */

typedef mcapi_uint_t mcapi_endp_attr_status_t;

/*

 * MCAPI Endpoint Status Flags, are used to query the status of an endpoint,

 * e.g. if it is connected and if so what type of channel, direction, etc.

 *

 * Note: The lower 16 bits are defined in mcapi.h whereas the upper 16 bits

 * are reserved for implementation specific purposes and if used must be

 * defined in implementation_spec.h. It is therefore recommended that the

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 149 of 169

 * upper 16 bits are masked off at the application level.

 *

 * 0x00000000

 * ---- mcapi.h

 * ---- implementation_spec.h

 *

 * Default = 0x00000000

 *

 */

#define MCAPI_ENDP_ATTR_STATUS_CONNECTED 0x00000001 /* The endpoint

 is connected */

#define MCAPI_ENDP_ATTR_STATUS_OPEN 0x00000002 /* The channel

 is open */

#define MCAPI_ENDP_ATTR_STATUS_OPEN_PENDING 0x00000004 /* An open request

 is pending */

#define MCAPI_ENDP_ATTR_STATUS_CLOSE_PENDING 0x00000008 /* An close

 request is

 pending */

#define MCAPI_ENDP_ATTR_STATUS_PKTCHAN 0x00000010 /* The channel

 is a packet

 channel */

#define MCAPI_ENDP_ATTR_STATUS_SCLCHAN 0x00000020 /* The channel

 is a scalar

 channel */

#define MCAPI_ENDP_ATTR_STATUS_SEND 0x00000040 /* Endpoint is

 the send side

 of the

 channel */

#define MCAPI_ENDP_ATTR_STATUS_RECEIVE 0x00000080 /* Endpoint is

 the receive

 side of the

 channel */

/* MCAPI_ENDP_ATTR_TIMEOUT */

typedef mcapi_timeout_t mcapi_endp_attr_timeout_t; /* Timeout for blocking

 send and receive

 functions Default =

 MCAPI_TIMEOUT_INFINITE

 and a value of

 MCAPI_TIMEOUT_IMMEDIATE

 (or 0) means that the

 function will return

 immediately, with

 success or failure */

/*

 * MCAPI endpoint attribute #'s

 * The first range (64) is assigned to MCA

 * Organizations can apply to the MCA for endpoint attribute # ranges

 * One organization can be assigned multiple ranges.

 */

#define MCAPI_MAX_NUM_ENDP_ATTRS_MCA 64 /* MCAPI endpoint attributes

 reserved for MCA */

#define MCAPI_MAX_NUM_ENDP_ATTRS_OTHER 32 /* MCAPI endpoint attributes

 reserved for other

 organizations */

/*

 * Macros for calculating starting and ending attribute numbers for an MCA

 * assigned attribute range.

 *

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 150 of 169

 * x = assigned range. One organization can be assigned multiple ranges.

 */

#define mcapi_start_endp_attribute(x) MCAPI_MAX_NUM_ENDP_ATTRS_MCA + \

 (x * MCAPI_MAX_NUM_ENDP_ATTRS_OTHER)

#define mcapi_end_endp_attribute(x) MCAPI_MAX_NUM_ENDP_ATTRS_MCA + \

 (x + 1) * \

 MCAPI_MAX_NUM_ENDP_ATTRS_OTHER

/*

 * MCAPI Initialization information

 * In addition to the MCAPI defined information implementations may

 * include implementation specific information.

 */

typedef struct

{

 mcapi_uint_t mcapi_version; /* MCAPI version, the three last

 (rightmost) hex digits are the

 minor number and those left

 of minor the major number */

 mcapi_uint_t organization_id; /* Implementation

 vendor/organization id */

 mcapi_uint_t implementation_version; /* Implementation version, the

 format is implementation

 defined */

 mcapi_uint_t number_of_domains; /* Number of domains in the

 topology */

 mcapi_uint_t number_of_nodes; /* Number of nodes in the domain,

 can be used for basic per

 domain topology discovery */

 mcapi_uint_t number_of_ports; /* Number of available ports on

 the local node */

 impl_info_t *impl_info; /* This structure has to be

 defined by the implementor in

 implementation_spec.h */

}mcapi_info_t;

/* MCAPI Organization specific reserved endpoint attribute numbers */

typedef struct

{

 mcapi_uint_t organization_id; /* Implementation

 vendor/organization id */

 mcapi_uint_t start_endp_attr_num; /* Starting MCA provided vendor

 specific attribute number */

 mcapi_uint_t end_endp_attr_num; /* Ending MCA provided vendor

 specific attribute number */

} mcapi__endp_attr_range_t;

/* In/out parameter indication macros */

#ifndef MCAPI_IN

#define MCAPI_IN const

#endif /* MCAPI_IN */

#ifndef MCAPI_OUT

#define MCAPI_OUT

#endif /* MCAPI_OUT */

/* Alignment macros */

#ifndef MCAPI_DECL_ALIGNED

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 151 of 169

#define MCAPI_DECL_ALIGNED MCA_DECL_ALIGNED

#endif

#ifndef MCAPI_BUF_ALIGN

#define MCAPI_BUF_ALIGN MCA_BUF_ALIGN

#endif

/*

 * Function prototypes

 */

/* Initialization, node and endpoint management */

void mcapi_initialize(

 MCAPI_IN mcapi_domain_t domain_id,

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_IN mcapi_node_attributes_t* mcapi_node_attributes,

 MCAPI_IN mcapi_param_t* init_parameters,

 MCAPI_OUT mcapi_info_t* mcapi_info,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_finalize(

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_domain_t mcapi_domain_id_get(

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_node_t mcapi_node_id_get(

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_node_init_attributes(

 MCAPI_OUT mcapi_node_attributes_t* mcapi_node_attributes,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_node_set_attribute(

 MCAPI_OUT mcapi_node_attributes_t* mcapi_node_attributes,

 MCAPI_IN mcapi_uint_t attribute_num,

 MCAPI_IN void* attribute,

 MCAPI_IN size_t attribute_size,

 MCAPI_OUT mcapi_status_t* status

);

void mcapi_node_get_attribute(

 MCAPI_IN mcapi_domain_t domain_id,

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_IN mcapi_uint_t attribute_num,

 MCAPI_OUT void* attribute,

 MCAPI_IN size_t attribute_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_endpoint_t mcapi_endpoint_create(

 MCAPI_IN mcapi_port_t port_id,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 152 of 169

void mcapi_endpoint_get_i(

 MCAPI_IN mcapi_domain_t domain_id,

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_IN mcapi_port_t port_id,

 MCAPI_OUT mcapi_endpoint_t* endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_endpoint_t mcapi_endpoint_get(

 MCAPI_IN mcapi_domain_t domain_id,

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_IN mcapi_port_t port_id,

 MCAPI_IN mcapi_timeout_t timeout,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_endpoint_delete(

 MCAPI_IN mcapi_endpoint_t endpoint,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_endpoint_get_attribute(

 MCAPI_IN mcapi_endpoint_t endpoint,

 MCAPI_IN mcapi_uint_t attribute_num,

 MCAPI_OUT void* attribute,

 MCAPI_IN size_t attribute_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_endpoint_set_attribute(

 MCAPI_IN mcapi_endpoint_t endpoint,

 MCAPI_IN mcapi_uint_t attribute_num,

 MCAPI_OUT const void* attribute,

 MCAPI_IN size_t attribute_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

/* Message functions */

void mcapi_msg_send_i(

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_IN void* buffer,

 MCAPI_IN size_t buffer_size,

 MCAPI_IN mcapi_priority_t priority,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_msg_send(

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_IN void* buffer,

 MCAPI_IN size_t buffer_size,

 MCAPI_OUT mcapi_priority_t priority,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 153 of 169

void mcapi_msg_recv_i(

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT void* buffer,

 MCAPI_IN size_t buffer_size,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_msg_recv(

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT void* buffer,

 MCAPI_IN size_t buffer_size,

 MCAPI_OUT size_t* received_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_uint_t mcapi_msg_available(

 MCAPI_IN mcapi_endpoint_t receive_endoint,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

/* Packet channel functions */

void mcapi_pktchan_connect_i(

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_pktchan_recv_open_i(

 MCAPI_OUT mcapi_pktchan_recv_hndl_t* receive_handle,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_pktchan_send_open_i(

 MCAPI_OUT mcapi_pktchan_send_hndl_t* send_handle,

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_pktchan_send_i(

 MCAPI_IN mcapi_pktchan_send_hndl_t send_handle,

 MCAPI_IN void* buffer,

 MCAPI_IN size_t size,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_pktchan_send(

 MCAPI_IN mcapi_pktchan_send_hndl_t send_handle,

 MCAPI_IN void* buffer,

 MCAPI_IN size_t size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 154 of 169

void mcapi_pktchan_recv_i(

 MCAPI_IN mcapi_pktchan_recv_hndl_t receive_handle,

 MCAPI_OUT void** buffer,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_pktchan_recv(

 MCAPI_IN mcapi_pktchan_recv_hndl_t receive_handle,

 MCAPI_OUT void** buffer,

 MCAPI_OUT size_t* received_size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_uint_t mcapi_pktchan_available(

 MCAPI_IN mcapi_pktchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_pktchan_release(

 MCAPI_IN void* buffer,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_boolean_t mcapi_pktchan_release_test(

 MCAPI_IN void* buffer,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_pktchan_recv_close_i(

 MCAPI_IN mcapi_pktchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_pktchan_send_close_i(

 MCAPI_IN mcapi_pktchan_send_hndl_t send_handle,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

/* Scalar channel functions */

void mcapi_sclchan_connect_i(

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_sclchan_recv_open_i(

 MCAPI_OUT mcapi_sclchan_recv_hndl_t* receive_handle,

 MCAPI_IN mcapi_endpoint_t receive_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 155 of 169

void mcapi_sclchan_send_open_i(

 MCAPI_OUT mcapi_sclchan_send_hndl_t* send_handle,

 MCAPI_IN mcapi_endpoint_t send_endpoint,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_sclchan_send_uint64(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_IN mcapi_uint64_t dataword,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_sclchan_send_uint32(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_IN mcapi_uint32_t dataword,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_sclchan_send_uint16(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_IN mcapi_uint16_t dataword,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_sclchan_send_uint8(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_IN mcapi_uint8_t dataword,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_uint64_t mcapi_sclchan_recv_uint64(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_uint32_t mcapi_sclchan_recv_uint32(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_uint16_t mcapi_sclchan_recv_uint16(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_uint8_t mcapi_sclchan_recv_uint8(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_uint_t mcapi_sclchan_available(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_sclchan_recv_close_i(

 MCAPI_IN mcapi_sclchan_recv_hndl_t receive_handle,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 156 of 169

void mcapi_sclchan_send_close_i(

 MCAPI_IN mcapi_sclchan_send_hndl_t send_handle,

 MCAPI_OUT mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

/* Non-blocking management functions */

mcapi_boolean_t mcapi_test(

 MCAPI_IN mcapi_request_t* request,

 MCAPI_OUT size_t* size,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

mcapi_boolean_t mcapi_wait(

 MCAPI_IN mcapi_request_t* request,

 MCAPI_OUT size_t* size,

 MCAPI_IN mcapi_timeout_t timeout,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

unsigned int mcapi_wait_any(

 MCAPI_IN size_t number,

 MCAPI_IN mcapi_request_t* requests,

 MCAPI_OUT size_t* size,

 MCAPI_IN mcapi_timeout_t timeout,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

void mcapi_cancel(

 MCAPI_IN mcapi_request_t* request,

 MCAPI_OUT mcapi_status_t* mcapi_status

);

/* Support functions */

char* mcapi_display_status(

 MCAPI_IN mcapi_status_t mcapi_status,

 MCAPI_OUT char* status_message,

 MCAPI_IN size_t size

);

#ifdef __cplusplus

}

#endif /* __cplusplus */

#endif /* MCAPI_H */

7.3 mca_impl_spec.h

/*

 * Copyright (c) 2011, The Multicore Association All rights reserved.

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are

 * met:

 *

 * (1) Redistributions of source code must retain the above copyright

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 157 of 169

 * notice, this list of conditions and the following disclaimer.

 *

 * (2) Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 *

 * (3) Neither the name of the Multicore Association nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * mca_impl_spec.h

 *

 * Version 2.015, March 2011

 *

 * Note: THE TYPE DEFINTIONS AND TYPES IN THIS FILE ARE REQUIRED.

 * THE SPECIFICE TYPES AND VALUES ARE IMPLEMENTATION DEFINED AS DESCRIBED

 * BELOW.

 * THE TYPES AND VALUES BELOW ARE SPECIFIC TO Poly-Messenger/MCAPI AND

 * INCLUDED ONLY TO EXEMPLIFY

 *

*/

#ifndef MCA_IMPL_SPEC_H

#define MCA_IMPL_SPEC_H

#include "psi_mca_impl_spec.h" /* PolyCore Software implementation

 specifics, INCLUDED ONLY TO

 EXEMPLIFY */

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

/*

 * MCA implementation specific type definitions.

 *

 * It is recommended that these types be either pointers or 32 bit

 * scalars, allowing simple arithmetic equality comparison (a == b).

 * Implementers may determine which of these type are used.

 *

 */

typedef unsigned int mca_request_t;

#ifdef __cplusplus

}

#endif /* __cplusplus */

#endif /* MCA_IMPL_SPEC_H */

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 158 of 169

7.4 mcapi_impl_spec.h

/*

 * Copyright (c) 2011, The Multicore Association All rights reserved.

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are

 * met:

 *

 * (1) Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * (2) Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 *

 * (3) Neither the name of the Multicore Association nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * mca_impl_spec.h

 *

 * Version 2.015, March 2011

 *

 * Note: THE TYPE DEFINTIONS AND TYPES IN THIS FILE ARE REQUIRED.

 * THE SPECIFICE TYPES AND VALUES ARE IMPLEMENTATION DEFINED AS DESCRIBED

 * BELOW.

 * THE TYPES AND VALUES BELOW ARE SPECIFIC TO Poly-Messenger/MCAPI AND

 * INCLUDED ONLY TO EXEMPLIFY

 *

*/

#ifndef MCAPI_IMPL_SPEC_H

#define MCAPI_IMPL_SPEC_H

#include "psi_mcapi_impl_spec.h" /* PolyCore Software implementation

 specifics, INCLUDED ONLY TO EXEMPLIFY */

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

/*

 * MCAPI implementation specific type definitions

 *

 * These types must be either pointers or 32 bit scalars, allowing simple

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 159 of 169

 * arithmetic equality * comparison (a == b).

 * Implementers may determine which of these type are used.

 *

 */

typedef unsigned int mcapi_endpoint_t; /* Note: The endpoint

 identifier must be

 topology unique. */

typedef unsigned int mcapi_pktchan_recv_hndl_t;

typedef unsigned int mcapi_pktchan_send_hndl_t;

typedef unsigned int mcapi_sclchan_send_hndl_t;

typedef unsigned int mcapi_sclchan_recv_hndl_t;

typedef struct {

 void* pMemory;

 unsigned nMemorySize;

 PMMCAPIParameters* pMCAPIParams;

 int nContextType;

} mcapi_param_t;

/* Number of MCAPI reserved ports, starting at port 0. Reserved ports can be

 * used for implementation specific purposes.

 *

 */

#define MCAPI_NUM_RESERVED_PORTS 1 /* Number of

reserved

 ports starting at

 port 0 */

/* Implementation defined MCAPI MIN and MAX values.

 *

 * Implementations may parameterize implementation specific max values,

 * smaller that the MCAPI max values. Implementations must specify what

 * those smaller values are and how they are set.

 *

 */

#define MCAPI_MAX_DOMAIN (2 << 14) - 1 /* Maximum value for domain */

#define MCAPI_MAX_NODE (2 << 7) - 1 /* Maximum value for node */

#define MCAPI_MAX_PORT (2 << 7) - 1 /* Maximum value for port */

#define MCAPI_MAX_MESSAGE_SIZE (2 << 31) - 1 /* Maximum message size */

#define MCAPI_MAX_PACKET_SIZE (2 << 31) - 1 /* Maximum packet size */

/*

 * Implementations may parameterize implementation specific priority min

 * value * and set the number of reserved ports. Implementations must

 * specify what * those values are and how they are set.

 */

#define MCAPI_MIN_PORT MCAPI_NUM_RESERVED_PORTS /* Minimum value for port */

#define MCAPI_MIN_PRORITY (2 << 31) - 1 /* Minimum priority value */

#ifdef __cplusplus

}

#endif /* __cplusplus */

#endif /* MCAPI_IMPL_SPEC_H */

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 160 of 169

7.5 mcapi_v1000_to_v2000.h

/*

 * Copyright (c) 2011, The Multicore Association All rights reserved.

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are

 * met:

 *

 * (1) Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * (2) Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 *

 * (3) Neither the name of the Multicore Association nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * mcapi_v1000_to_v2000.h

 *

 * Version 2.015, March 2011

 *

 */

#ifndef MCAPI_V1000_TO_V2000_H_

#define MCAPI_V1000_TO_V2000_H_

#include "mcapi.h"

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

/*

 * Type definitions not used in MCAPI 2.015

 */

typedef unsigned int mcapi_version_t;

#define MCAPI_INFINITE

#define MCAPI_ENDPOINT_INVALID

#define MCAPI_INFINITE MCAPI_TIMEOUT_INFINITE

/*

 * Max value conversions

 */

#define MCAPI_MAX_NUM_NODES MCAPI_MAX_NODE + 1 /* Max number

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 161 of 169

 of nodes */

#define MCAPI_MAX_NUM_ENDPOINTS MCAPI_MAX_PORT /* Max number of

 endpoints per

 node */

#define MCAPI_MAX_NUM_CHANNEL_HANDLES MCAPI_MAX_CHANNEL_HANDLE + 1 /* Max

 number of channel

 handles per

 endpoint */

#define MCAPI_MAX_NUM_REQUESTS MCAPI_MAX_REQUEST /* Max number of

 request handles

 per endpoint */

#define MCAPI_MAX_NUM_PRORITIES MCAPI_MAX_PRORITY /* Max number of

 priorities */

/*

 * Status code conversions

 */

#define MCAPI_INCOMPLETE MCAPI_PENDING

#define MCAPI_EPARAM MCAPI_ERR_PARAMETER

#define MCAPI_EDOMAIN_NOTVALID MCAPI_ERR_DOMAIN_INVALID

#define MCAPI_ENODE_NOTVALID MCAPI_ERR_NODE_INVALID

#define MCAPI_ENO_INIT MCAPI_ERR_NODE_INITFAILED

#define MCAPI_INITIALIZED MCAPI_ERR_NODE_INITIALIZED

#define MCAPI_ENODE_NOTINIT MCAPI_ERR_NODE_NOTINIT

#define MCAPI_ENO_FINAL MCAPI_ERR_NODE_FINALFAILED

#define MCAPI_EPORT_NOTVALID MCAPI_ERR_PORT_INVALID

#define MCAPI_ENOT_ENDP MCAPI_ERR_ENDP_INVALID

#define MCAPI_EENDP_NOTALLOWED MCAPI_ERR_ENDP_NOPORTS

#define MCAPI_EENDP_LIMIT MCAPI_ERR_ENDP_LIMIT

#define MCAPI_EENDP_ISCREATED MCAPI_ERR_ENDP_EXISTS

#define MCAPI_ENOT_OWNER MCAPI_ERR_ENDP_NOTOWNER

#define MCAPI_EENDP_REMOTE MCAPI_ERR_ENDP_REMOTE

#define MCAPI_EATTR_INCOMP MCAPI_ERR_ATTR_INCOMPATIBLE

#define MCAPI_EATTR_SIZE MCAPI_ERR_ATTR_SIZE

#define MCAPI_EATTR_NUM MCAPI_ERR_ATTR_NUM

#define MCAPI_EATTR_VALUE MCAPI_ERR_ATTR_VALUE

#define MCAPI_EATTR_NOTSUPPORTED MCAPI_ERR_ATTR_NOTSUPPORTED

#define MCAPI_EREAD_ONLY MCAPI_ERR_ATTR_READONLY

#define MCAPI_EMESS_LIMIT MCAPI_ERR_MSG_LIMIT

#define MCAPI_ETRUNCATED MCAPI_ERR_MSG_TRUNCATED

#define MCAPI_ETRANSMISSION MCAPI_ERR_TRANSMISSION

#define MCAPI_ENO_MEM MCAPI_ERR_MEM_LIMIT

#define MCAPI_EREQ_TIMEOUT MCAPI_TIMEOUT

#define MCAPI_ENO_REQUEST MCAPI_ERR_REQUEST_LIMIT

#define MCAPI_EPRIO MCAPI_ERR_PRIORITY

#define MCAPI_ECHAN_OPEN MCAPI_ERR_CHAN_OPEN

#define MCAPI_ECHAN_TYPE MCAPI_ERR_CHAN_TYPE

#define MCAPI_ECONNECTED MCAPI_ERR_CHAN_CONNECTED

#define MCAPI_ECHAN_OPENPENDING MCAPI_ERR_CHAN_OPENPENDING

#define MCAPI_EDIR MCAPI_ERR_CHAN_DIRECTION

#define MCAPI_ENOT_OPEN MCAPI_ERR_CHAN_NOTOPEN

#define MCAPI_ENOT_HANDLE MCAPI_ERR_CHAN_INVALID

#define MCAPI_ENOTREQ_HANDLE MCAPI_ERR_REQUEST_INVALID

#define MCAPI_EPACK_LIMIT MCAPI_ERR_PKT_LIMIT

#define MCAPI_ENOT_VALID_BUF MCAPI_ERR_BUF_INVALID

#define MCAPI_ESCL_SIZE MCAPI_ERR_GENERAL

#define MCAPI_EREQ_CANCELED MCAPI_ERR_REQUEST_CANCELLED

#define MCAPI_LAST_CODE MCAPI_STATUSCODE_END

/*

 * Endpoint Atribute conversions

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 162 of 169

 */

#define mcapi_attr_endpoint_type mcapi_endp_attr_type_t

#define mcapi_attr_num_priorities mcapi_endp_attr_num_priorities_t

#define mcapi_attr_num_buffers mcapi_endp_attr_num_send_buffers_t

#define mcapi_attr_message_buffer_size mcapi_endp_attr_max_payload_size_t

#define mcapi_attr_buffer_type mcapi_endp_attr_buffer_type_t

#define mcapi_attr_memory_type mcapi_endp_attr_memory_type_t

#define mcapi_attr_timeout mcapi_endp_attr_timeout_t

#define mcapi_attr_endp_priority mcapi_endp_attr_priority_t

#define mcapi_attr_endp_status mcapi_endp_attr_status_t

#define mcapi_attr_num_recv_buffers_available \

 mcapi_endp_attr_num_recv_buffers_t

#define MCAPI_ATTR_NUM_PRIORITIES MCAPI_ENDP_ATTR_NUM_PRIORITIES

#define MCAPI_ATTR_NUM_BUFFERS MCAPI_ENDP_ATTR_NUM_SEND_BUFFERS

#define MCAPI_ATTR_NUM_RECV_BUFFERS_AVAILABLE \

 MCAPI_ENDP_ATTR_NUM_RECV_BUFFERS

#define MCAPI_ATTR_ENDP_STATUS MCAPI_ENDP_ATTR_ENDP_STATUS

#define MCAPI_ATTR_TIMEOUT MCAPI_ENDP_ATTR_TIMEOUT

#define MCAPI_ATTR_BUFFER_SIZE MCAPI_ENDP_ATTR_MAX_PAYLOAD_SIZE

#define MCAPI_ATTR_BUFFER_TYPE MCAPI_ENDP_ATTR_BUFFER_TYPE

#define MCAPI_ATTR_MEMORY_TYPE MCAPI_ENDP_ATTR_MEMORY_TYPE

#define MCAPI_ATTR_ENDP_PRIORITY MCAPI_ENDP_ATTR_PRIORITY

#define MCAPI_ATTR_END MCAPI_ENDP_ATTR_END

/*

 * Endpoint Status Flag conversions

 */

#define MCAPI_CREATED MCAPI_ENDP_CREATED

#define MCAPI_CONNECTED MCAPI_ENDP_ATTR_STATUS_CONNECTED

#define MCAPI_OPEN MCAPI_ENDP_ATTR_STATUS_OPEN

#define MCAPI_OPEN_PENDING MCAPI_ENDP_ATTR_STATUS_OPEN_PENDING

#define MCAPI_CLOSE_PENDING MCAPI_ENDP_ATTR_STATUS_CLOSE_PENDING

#define MCAPI_PKT MCAPI_ENDP_ATTR_STATUS_PKTCHAN

#define MCAPI_SCL MCAPI_ENDP_ATTR_STATUS_SCLCHAN

#define MCAPI_SEND MCAPI_ENDP_ATTR_STATUS_SEND

#define MCAPI_RECEIVE MCAPI_ENDP_ATTR_STATUS_RECEIVE

#define MCAPI_GET_PENDING MCAPI_ENDP_ATTR_STATUS_GET_PENDING

/* Attribute number ranges */

#define MCAPI_MAX_NUM_ATTRS_MCA MCAPI_MAX_NUM_ENDP_ATTRS_MCA

#define MCAPI_MAX_NUM_ATTRS_OTHER MCAPI_MAX_NUM_ENDP_ATTRS_OTHER

/* MCA organization id's */

#define ORG_ID_PSI MCA_ORG_ID_PSI

#define ORG_ID_FSL MCA_ORG_ID_FSL

#define ORG_ID_TBA MCA_ORG_ID_TBA

/*

 * Function prototype conversions

 */

/*

 * Initialization, node and endpoint management

 */

extern void mcapi_1000_initialize(

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_OUT mcapi_version_t* mcapi_version,

 MCAPI_OUT mcapi_status_t* mcapi_status);

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 163 of 169

#define mcapi_get_node_id(mcapi_status) mcapi_node_id_get(mcapi_status)

#define mcapi_create_endpoint(port_id, mcapi_status) \

 mcapi_endpoint_create(port_id, mcapi_status)

#define mcapi_1000_endpoint_get_i(node_id, port_id, endpoint, \

 request, mcapi_status) mcapi_endpoint_get_i(0, node_id, \

 port_id, endpoint, request, mcapi_status)

#define mcapi_1000_endpoint_get(node_id, port_id, mcapi_status) \

 mcapi_endpoint_get(0, node_id, port_id, 0, mcapi_status)

#define mcapi_delete_endpoint(endpoint, mcapi_status) \

 mcapi_endpoint_delete(endpoint, mcapi_status)

#define mcapi_get_endpoint_attribute(endpoint, attribute_num, attribute, \

 attribute_size, mcapi_status) \

 mcapi_endpoint_get_attribute(endpoint, attribute_num, attribute, \

 attribute_size, mcapi_status)

#define mcapi_endpoint_set_attribute(endpoint, attribute_num, attribute, \

 attribute_size, mcapi_status) \

 mcapi_set_endpoint_attribute(endpoint, attribute_num, attribute, \

 attribute_size, mcapi_status)

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 164 of 169

/* Packet channel functions */

#define mcapi_connect_pktchan_i(send_endpoint, receive_endpoint, request, \

 mcapi_status) \

 mcapi_pktchan_connect_i(send_endpoint, receive_endpoint, request, \

 mcapi_status)

#define mcapi_open_pktchan_i(receive_handle, receive_endpoint, request, \

 mcapi_status) \

 mcapi_pktchan_recv_open_i(receive_handle, receive_endpoint, \

 request, mcapi_status)

#define mcapi_open_pktchan_send_i(send_handle, send_endpoint, request, \

 mcapi_status) \

 mcapi_pktchan_send_open_i(send_handle, send_endpoint, request, \

 mcapi_status)

#define mcapi_pktchan_free(buffer, mcapi_status) \

 mcapi_pktchan_release(buffer, mcapi_status)

/* Scalar channel functions */

#define mcapi_connect_sclchan_i(send_endpoint, receive_endpoint, \

 request, mcapi_status) \

 mcapi_sclchan_connect_i(send_endpoint, receive_endpoint, request, \

 mcapi_status)

#define mcapi_open_sclchan_recv_i(receive_handle, receive_endpoint, \

 request, mcapi_status) \

 mcapi_sclchan_recv_open_i(receive_handle, receive_endpoint, \

 request, mcapi_status)

#define mcapi_open_sclchan_send_i(send_handle, send_endpoint, request, \

 mcapi_status) \

 mcapi_sclchan_send_open_i(send_handle, send_endpoint, request, \

 mcapi_status)

/* Non-blocking management functions */

#define mcapi_1000_wait(request, size, mcapi_status, timeout) \

 mcapi_wait(request, size, timeout, mcapi_status)

#define mcapi_1000_wait_any(number, requests, size, mcapi_status, timeout) \

 mcapi_wait_any(number, *requests, size, timeout, mcapi_status)

#ifdef __cplusplus

}

#endif /* __cplusplus */

#endif /* MCAPI_V1000_TO_V2000_H_ */

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 165 of 169

7.6 mcapi_1000_functions.c

/*

 * Copyright (c) 2011, The Multicore Association All rights reserved.

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are

 * met:

 *

 * (1) Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * (2) Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 *

 * (3) Neither the name of the Multicore Association nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * mcapi_1000_functions.c

 *

 * Version 2.015, March 2011

 *

 */

#include "mcapi.h"

void mcapi_1000_initialize(

 MCAPI_IN mcapi_node_t node_id,

 MCAPI_OUT mcapi_version_t* mcapi_version,

 MCAPI_OUT mcapi_status_t* mcapi_status){

 mcapi_version_t version = 0;

 mcapi_info_t info;

 mcapi_initialize(0, node_id, MCAPI_NULL, MCAPI_NULL, &mcapi_info, \

 mcapi_status);

 *mcapi_version = mcapi_info->mcapi_version;

}

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 166 of 169

8. Appendix C: MCAPI Specification License Agreement

PLEASE READ THIS MULTICORE ASSOCIATION LICENSE AGREEMENT ("LICENSE" or
“AGREEMENT”) CAREFULLY BEFORE DOWNLOADING THE MULTICORE ASSOCIATION’S
MULTICORE COMMUNICATIONS API (MCAPI) SPECIFICATION AND/OR THE MULTICORE
ASSOCIATION’S RESOURCE MANAGEMENT API (MRAPI) SPECIFICATION. BY USING THE
MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION, YOU ARE AGREEING TO BE BOUND BY
THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE, DO
NOT DOWNLOAD OR USE THE MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION. FOR
PURPOSES OF THIS LICENSE, “YOU” MEANS THE INDIVIDUAL OR ENTITY THAT IS BEING
LICENSED TO USE THE MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION UNDER THE
TERMS AND CONDITIONS OF THIS LICENSE. IF AN ENTITY IS BEING LICENSED, THEN THE
PERSON AGREEING TO BE BOUND REPRESENTS THAT THE ENTITY HAS AUTHORIZED AND
DIRECTED THE MAKING OF THIS LICENSE.

1. General. The specification and/or documentation accompanying this License whether on disk, in
read only memory, on any other media or in any other form (collectively the "MCAPI Specification and/or
MRAPI Specification") are licensed, not sold, to you by the Multicore Association for use only under the
terms of this License, and Multicore Association reserves all rights not expressly granted to you. The
rights granted herein are limited in scope per the terms of this License. The terms of this License will
govern any upgrades provided by Multicore Association that replace and/or supplement the original
Multicore Association MCAPI Specification and/or MRAPI Specification, unless such upgrade is
accompanied by a separate license in which case the terms of that license will govern.

2. Permitted License Uses and Restrictions. This License allows you to download and use the Multicore
Association MCAPI Specification and/or MRAPI Specification only as expressly permitted under this
License. You are permitted to use the MCAPI Specification and/or MRAPI Specification for your own
business purposes, to design, create, install, test, utilize, and distribute to other companies or
individuals derived works that you will own and for which you will be solely responsible. As indicated in
the MCAPI Specification and/or MRAPI Specification, you may document implementation specific
behavior in the sections designated in the MCAPI Specification and/or MRAPI Specification; however,
such documentation shall not constitute a modification of the MCAPI Specification and/or MRAPI
Specification and must not be presented as such. You may create hard copies of the MCAPI
Specification and/or MRAPI Specification for your own use and you may view electronic versions of the
MCAPI Specification and/or MRAPI Specification on your personal computer (or other electronic viewing
device) for your own use. If you have employees, you may authorize your employees to use the MCAPI
Specification and/or MRAPI Specification in accordance with the provisions of this License and to make
or view copies of the MCAPI Specification and/or MRAPI Specification in accordance with the foregoing
provisions of this Section 2. Any use or copying of the MCAPI Specification and/or MRAPI Specification
that is not specifically permitted by this License shall constitute a violation of this License and a default
by you.

3. Enhancements by Multicore Association. In the event that at any time Multicore Association makes
any enhancement, update, or modification to the MCAPI Specification and/or MRAPI Specification or
becomes the owner of any new enhancement, update, or modification to the MCAPI Specification
and/or MRAPI Specification, then upon notice to you, you shall have the same right and license to use
and exploit the same as it is granted hereunder with respect to the original MCAPI Specification and/or
MRAPI Specification. You agree that all rights in and to enhancements, updates, and modifications
effected by Multicore Association, if any, to the MCAPI Specification and/or MRAPI Specification, shall
remain the sole and exclusive property of Multicore Association. Nothing contained herein shall obligate
Multicore Association to either create or make available any new enhancement, update or modifications
to the Multicore Association MCAPI Specification and/or MRAPI Specification. Multicore Association
has no obligation to provide any maintenance and technical support services.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 167 of 169

4. Enhancements by You. You shall have no right to independently modify, improve, or enhance the
Multicore Association MCAPI Specification and/or MRAPI Specification. However, your derived work
may support additional behavior that is not defined in the specification as long as that behavior doesn’t
prevent your derived work from correctly implementing the MCAPI Specification and/or MRAPI
Specification.

5. Use of Trademark. You agree that you will not, without the prior written consent of Multicore
Association, use in advertising, publicity, packaging, labeling, or otherwise any trade name, trademark,
service mark, symbol, or any other identification owned by Multicore Association to identify any of its
products or services.

6. Delivery. The Multicore Association MCAPI Specification and/or MRAPI Specification will be
available for downloading on Multicore Association’s website in accordance with the current policies and
procedures of Multicore Association. Multicore Association reserves the right to modify such
procedures in its sole and absolute discretion.

7. Term and Termination.

 a. Term. The term of this Agreement shall continue so long as you are not in Default as set forth in
Section 7(b).

 b. Termination. Multicore Association shall have the right to terminate this Agreement and the
License granted herein if you commit an act of or are subject to any Default. A Default means you
breach a term or condition of this Agreement or you assign or purport to assign any of the rights granted
herein without the prior written approval of Multicore Association. Upon the occurrence of a Default, this
Agreement shall immediately terminate. Multicore Association’s rights as set forth in this Section 7(b)
are cumulative and, except as provided herein, are in addition to any other rights Multicore Association
may have at law or in equity.

 c. Effect of Termination. Upon the expiration or termination of this Agreement, the rights granted to
you hereunder shall immediately cease and discontinue, and you shall be required to immediately return
any and all materials and deliverables provided to you under this Agreement, including without
limitation, the Multicore Association MCAPI Specification and/or MRAPI Specification. The provisions
contained in Sections 1,4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 of this Agreement shall survive
any such termination or expiration.

8. No Warranty. Multicore Association provides no warranty for the Multicore Association MCAPI
Specification and/or MRAPI Specification.

9. Disclaimer of Warranties. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT USE OF THE
MULTICORE ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION IS AT YOUR
SOLE RISK AND THAT THE ENTIRE RISK AS TO SATISFACTORY QUALITY, PERFORMANCE,
ACCURACY AND EFFORT IS WITH YOU. THE MULTICORE ASSOCIATION MCAPI SPECIFICATION
AND/OR MRAPI SPECIFICATION IS PROVIDED "AS IS", WITH ALL FAULTS AND WITHOUT
WARRANTY OF ANY KIND, AND MULTICORE ASSOCIATION HEREBY DISCLAIMS ALL
WARRANTIES AND CONDITIONS WITH RESPECT TO THE MULTICORE ASSOCIATION MCAPI
SPECIFICATION AND/OR MRAPI SPECIFICATION, EITHER EXPRESS, IMPLIED OR STATUTORY,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES AND/OR CONDITIONS OF
MERCHANTABILITY, OF SATISFACTORY QUALITY, OF FITNESS FOR A PARTICULAR PURPOSE,
OF ACCURACY, OF QUIET ENJOYMENT, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
MULTICORE ASSOCIATION DOES NOT WARRANT AGAINST INTERFERENCE WITH YOUR
ENJOYMENT OF THE MULTICORE ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI
SPECIFICATION, THAT THE FUNCTIONS CONTAINED IN THE MULTICORE ASSOCIATION MCAPI
SPECIFICATION AND/OR MRAPI SPECIFICATION WILL MEET YOUR REQUIREMENTS, THAT THE
OPERATION OF THE MULTICORE ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI
SPECIFICATION WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
MULTICORE ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION WILL BE
CORRECTED. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY MULTICORE
ASSOCIATION OR A MULTICORE ASSOCIATION AUTHORIZED REPRESENTATIVE SHALL

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 168 of 169

CREATE A WARRANTY. SHOULD THE MULTICORE ASSOCIATION MCAPI SPECIFICATION
AND/OR MRAPI SPECIFICATION PROVE DEFECTIVE, YOU ASSUME THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION. SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES OR LIMITATIONS ON APPLICABLE STATUTORY
RIGHTS OF A CONSUMER, SO THE ABOVE EXCLUSION AND LIMITATIONS MAY NOT APPLY TO
YOU.

10. POTENTIAL MISUSE OF MULTICORE ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI
SPECIFICATION. YOU HEREBY ACKNOWLEDGE AND REPRESENT THAT YOU HAVE BEEN
EXPRESSLY WARNED BY MULTICORE ASSOCIATION THAT THE MULTICORE ASSOCIATION
MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION MAY BE INCOMPATIBLE WITH ANY
APPLICATION OR END-USER PRODUCT, AND THAT SUCH MISUSE OF THE MULTICORE
ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION COULD RESULT IN
SIGNIFICANT PROPERTY DAMAGE AND/OR BODILY HARM. YOU FURTHER HEREBY
ACKNOWLEDGE AND REPRSENT THAT YOU HAVE BEEN EXPRESSLY WARNED BY MULTICORE
ASSOCIATION THAT THE MULTICORE ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI
SPECIFICATION HAS NOT BEEN SPECIFICALLY DESIGNED OR TESTED FOR USE IN
CONNECTION WITH ANY PARTICULAR APPLICATION, END-USER PRODUCT OR ACTIVITY. FOR
EXAMPLE, BUT WITHOUT LIMITATION, YOU ACKNOWLEDGE THAT THE MCAPI SPECIFICATION
AND/OR MRAPI SPECIFICATION HAS NOT BEEN SPECIFICALLY DESIGNED OR TESTED FOR
USE IN CONNECTION WITH HIGH RISK ACTIVITIES SUCH AS THE OPERATION OF NUCLEAR
FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL
SYSTEMS, LIFE SUPPORT MACHINES OR OTHER EQUIPMENT IN WHICH THE FAILURE OF THE
MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION OR THE DERIVED WORK YOU CREATE
COULD LEAD TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL
DAMAGE. ACCORDINGLY, YOU AGREE THAT YOUR USE OF THE MCAPI SPECIFICATION
AND/OR MRAPI SPECIFICATION IN CONNECTION WITH ANY SUCH HIGH RISK ACTIVITES OR
OTHERWISE SHALL BE AT YOUR SOLE DISCRETION, RISK AND RESPONSIBILITY.

11. Limitation of Liability. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT SHALL
MULTICORE ASSOCIATION BE LIABLE FOR PERSONAL INJURY, OR ANY INCIDENTAL, SPECIAL,
INDIRECT, CONSEQUENTIAL OR EXEMPLARY DAMAGES WHATSOEVER, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, LOSS OF DATA, BUSINESS INTERRUPTION OR
ANY OTHER COMMERCIAL DAMAGES OR LOSSES, ARISING OUT OF OR RELATED TO YOUR
USE OR INABILITY TO USE THE MULTICORE ASSOCIATION MCAPI SPECIFICATION AND/OR
MRAPI SPECIFICATION, HOWEVER CAUSED, REGARDLESS OF THE THEORY OF LIABILITY
(CONTRACT, TORT OR OTHERWISE) AND EVEN IF MULTICORE ASSOCIATION HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW
THE LIMITATION OF LIABILITY FOR PERSONAL INJURY, OR OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THIS LIMITATION MAY NOT APPLY TO YOU. In no event shall
MULTICORE ASSOCIATION'S total liability to you for all damages (other than as may be required by
applicable law in cases involving personal injury) exceed the amount of fifty dollars ($50.00). The
foregoing limitations will apply even if the above stated remedy fails of its essential purpose.

12. Sole Responsibility for Use; Indemnification. You agree to be solely responsible for your use of the
MCAPI Specification and/or MRAPI Specification including, but not limited to, use in designing, creating,
installing, testing, utilizing, and distributing derived work. The entire risk as to the use, results and
performance of the MCAPI Specification and/or MRAPI Specification is assumed by you. You agree
that Multicore Association shall have no liability whatsoever for any use you make of the MCAPI
Specification and/or MRAPI Specification. Upon a request by Multicore Association, you agree to
indemnify, defend, reimburse, and hold harmless Multicore Association, and its members, and their
officers, directors, shareholders, agents, employees, representatives, successors, and assigns, from
and against any and all claims, demands, liabilities, damages, costs, expenses, actions or causes of
action of any name or nature (including attorneys ' fees and costs), which may be asserted, claimed,
prosecuted or established against them, or any of them, arising out of, in connection with or in any
manner related to any or all of the following: (a) your use of the MCAPI Specification and/or MRAPI
Specification; (b) any use, inability to use or malfunction of any derived work that you design or create
from the MCAPI Specification and/or MRAPI Specification; and (c) your breach of or default under any
provision of this License.

 MCAPI API Specification V2.015

The Multicore Association March 25, 2011 Page 169 of 169

13. Export Law Assurances. You may not use or otherwise export or re-export the MULTICORE
ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION except as authorized by
United States law and the laws of the jurisdiction in which the MULTICORE ASSOCIATION MCAPI
Specification and/or MRAPI Specification was obtained. In particular, but without limitation, the
MULTICORE ASSOCIATION MCAPI SPECIFICATION AND/OR MRAPI SPECIFICATION may not be
exported or re-exported (a) into (or to a national or resident of) any U.S. embargoed countries (currently
Cuba, Iran, Iraq, Libya, North Korea, Sudan and Syria), or (b) to anyone on the U.S. Treasury
Department's list of Specially Designated Nationals or the U.S. Department of Commerce Denied
Person's List or Entity List. By using the MULTICORE ASSOCIATION MCAPI SPECIFICATION
AND/OR MRAPI SPECIFICATION, you represent and warrant that you are not located in, under control
of, or a national or resident of any such country or on any such list.

14. Relationship of Parties. Neither this Agreement, nor any terms and conditions contained herein,
may be construed as creating or constituting a partnership, joint venture, or agency relationship
between the parties. Neither party will have the power to bind the other or incur obligations on the other
party's behalf without the other party's prior written consent.

15. Waiver. No failure of either party to exercise or enforce any of its rights under this Agreement will
act as a waiver of such rights.

16. Controlling Law and Severability; Location for Resolving Disputes. This License will be governed by
and construed in accordance with the laws of the State of California, as applied to agreements entered
into and to be performed entirely within California between California residents and without reference to
its conflict of laws principles. This License shall not be governed by the United Nations Convention on
Contracts for the International Sale of Goods, the application of which is expressly excluded. If for any
reason a court of competent jurisdiction finds any provision, or portion thereof, to be unenforceable, the
remainder of this License shall continue in full force and effect. You agree that the exclusive jurisdiction
for any claim or dispute with Multicore Association under this Agreement or relating in any way to your
use of the MCAPI Specification and/or MRAPI Specification resides in the federal or state courts located
in the State of California and you further agree and expressly consent to the exercise of personal
jurisdiction in such courts in connection with any such dispute.

17. Complete Agreement; Governing Language. This License constitutes the entire agreement
between the parties with respect to the use of the MULTICORE ASSOCIATION MCAPI Specification
and/or MRAPI Specification licensed hereunder and supersedes all prior or contemporaneous
understandings regarding such subject matter. No amendment to or modification of this License will be
binding unless in writing and signed by MULTICORE ASSOCIATION. Any translation of this License is
done for local requirements and in the event of a dispute between the English and any non-English
versions, the English version of this License shall govern.

