MRAPI| APl Specification V1.0

THE

Multicore

ASSOCIATION

Multicore Resource API
(MRAPI) Specification
V1.0

Document ID: MRAPI API Specification
Document Version: 1.0

Status: Release

Distribution: General

The Multicore Association November 15, 2010

Page 1 of 160

MRAPI| APl Specification V1.0

Copyright © 2010 The Multicore Association, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission from The Multicore Association, Inc.

All copyright, confidential information, patents, design rights and all other intellectual property rights of
whatsoever nature contained herein are and shall remain the sole and exclusive property of Multicore
Association. The information furnished herein is believed to be accurate and reliable. However, no
responsibility is assumed by The Multicore Association, Inc. for its use, or for any infringements of
patents or other rights of third parties resulting from its use.

The Multicore Association, Inc. name and The Multicore Association, Inc. logo are trademarks or
registered trademarks of The Multicore Association, Inc. All other trademarks are the property of their
respective owners.

The Multicore Association, Inc.
PO Box 4854

El Dorado Hills, CA 95762
530-672-9113
www.multicore-association.org

The Multicore Association November 15, 2010 Page 2 of 160

MRAPI| APl Specification V1.0

Table of Contents

[(=] = (o= PP ERPT 7
D72 (101 (] o PP PU PP RPPR 7
R P (=To I B o Tet U] g o =T o PR UR PP RPN 8

O 1 Y (o To [V T o3 Ao o IO PR PRPPURR PRSPPI 9
11 OVEBIVIBW ...ttt ettt ettt ekt e st e Rt e e st e e Rt e aa et e R et e e s et e e R et e an R e e e ne e e nmn e e anne e e snreeanneeea 9

111 MRAPT GOGIS ...ttt 9

1.1.2 The MRAPI FEALUIE SELccocieiiiiieiiee et 10

1.13 Existing Standards and APIScooiiiiiiiii e 10
1.131 POSIX® Shared MEMOIYccoiuieiieieiieeiiee et 10

1.1.3.2 POSIX Mutexes and Semaphorescoccevviiiieiniiie e 10

1.1.33 Performance AP (PAPI) ..o 13

1.1.34 IBIM DACS ...ttt 13

1.1.35 GASNeEt SPECIfICALIONeiiiiiiiiiciiiie e 13

1.1.3.6 ARMCIT LIBraryoocveiioie e 14

1.2 HiStOTY e 14

A \V | N ol 0] g o =] o £ P PUPP P PP 15
21 [o3 T o PP TPTPPPUPRP 15
2.2 NOAES ..ttt ea et e e e e e e e e e e e 15
2.3 SYNChronization PIMILIVESouiiiiiiiiiee e 15

231 MUEEXES ..t e ettt s e e e e e ettt b e e e e e e eestnb e e e aaeeenes 16

23.2 SEMAPNOTES .o 16

2.3.3 REAAEIWWIEEE LOCKS ... ettveiiiie ettt ettt e e e e et ere e e e e e s e s nnraeeeaee s 16

2.4 MEMOTY ... 16
241 SNATEA MEMOIY ...ttt e et e e 16

2.4.2 REMOLE MEIMOIY ...t e e e e e e et e e e tbb e e eaaaaees 17

25 1= =T = = PP PP P PTPRPP 19
251 Metadata Resource Data STIUCIUIEccuvvieiiiiiieiiee e 19

2.6 ATIIDULES ettt s et e st e e s e e s s 19
2.7 Sharing ACrOSS DOM@INSccviiiiiiiiieie ettt 20
2.8 Waiting for Non-Blocking OPerationsccooiiie e e ie et 20
29 Error Handling PhilOSOPRYuiiiiii e 20
2.10 Timeout and Cancellation PhiloSOPNYcooiiiiiiiiii e 21
2 O B L= = R Y/ o1 OO PP PP PPTPPPRPPP: 21
P22 5 0t R 011 = o T o [0 0 1 =1 o PP PRR 21

P2 N 111 = o Vo To = PP PUPRR 21

2.11.3 Initialization Parameters and Informationccccceeviiiiiiiiie e 21
2.11.3.1 Mrapi_Param ... 21

2.11.3.2 mMrapi_info_ L. 22

A 1 = T o T (=E{o 10 (oL SO PRRP P 22

2115 mrapi_muteX_NNALt .. 23

N G R 111 = 1 o T =) Y/ ST PRRPT P 23

2117 mrapi_Sem_NNALT . ..o 23

2.11.8 mrapi_rWI_NNGLt ..o 24

2.11.9 mMrapi_WI_mMOOE L. .o 24
2.11.10 mrapi_shmem_NNdlt ... 24
21211 mrapi_rmem_ NNl 24
2.11.12 Mrapi_fMemM_atYPE_t. . ittt et e 24

0 e T [=T 01 1)1 = TP UPRRPTP 24

A N A Yo% - | £ TP PRRPT PP 25

P B S 10 = o T (=T [V L= TP PRRP P 25

A G 10 = o TS = (1 L TP PP PRRPP 25
2.11.17 Mrapi_tIMEOUL T...eeiiiieiiiiet ettt e e et e e e e e e s e bt e e e e e e e e e e annbeees 25
2.11.18 Other MRAPI DAtA TYPES ...eeeieieeiiaiittieiteae e e ittt e e e e e s ettt e e e e e e e s assabbeeeaeaeesaannneees 26

The Multicore Association November 15, 2010 Page 3 of 160

MRAPI| APl Specification V1.0

2.12 MRAPI Compatibility With MCAP ..ottt 26
2.13 Application Portability CONCEIMNSiiiiiiiiieiiiet ettt 26
2.14 IMPIEMENTAtION CONCEINSoiiiiiiiieiiiie ettt e e s e e s an et e s ab b et e e e st e e e anbeeeeeanees 26
2.14.1 Thread-Safe IMpIemMentationsSoccuiieiiiiiiei e 26

2.15 Potential FULUIrE EXIENSIONScccvviiiiiiiiiieiiie e sitee st snn e e nnneennnes 26
2.15.1 RCU (read, copy, Update) I0CKSc.cueiiiieiiiiiiiiieee e 27

2.15.2 Non-Owner Remote Memory AllOCAtIONuvveveeeee i 27

2.15.3 Application-Level Metadataccccuuveiieiei i 27

2.15.4 Locking Of RESOUICE LISES ...eeviiiiiiiiiiiiiiiiie st e e st e e e e e e aran e e e e e e s e 27

2.15.5 Debug, Statistics and Status fuNCLIONSccvvviieiee i 27

2.15.6 Multiple Semaphore LOCK REQUESTS..........ccuviiiiiiiiieiiiie et 27

2.15.7 Node Lists for Remote Memory Creation ROULINES............cccceeiiiiiiiiiiiiiennieeee 27

I 1V 1 20 A o A = F U 28
3.1 1070] 0171 o1 1o} o ST UPRRPT P 28
3.2 LCT=T = o= | PP PRRP P 29
3.21 MRAPI_INITIALIZE......o et e e e e e e e eees 30

3.2.2 MRAPI_NODE_INIT_ATTRIBUTES.......oiiii it 31

3.2.3 MRAPI_NODE_SET_ATTRIBUTE ...ttt 32

3.24 MRAPI_NODE_GET_ATTRIBUTEceiiiiiiiiieiiee et 33

3.25 MRAPI_FINALIZE.......coieeee ettt 34

3.2.6 MRAPI_DOMAIN_ID_GET ...ttt ettt snn e esnee e 35

3.27 MRAPI_NODE_ID_GET ..ocoiiieeeieeeeeeeeeete e eeeee e en et ennereeans 36

3.3 SyNChronization PIMILIVESouiiiiiiiiie e 37
3.3.1 MUEEXES ..t e ettt s e e e e e ettt b e e e e e e eestnb e e e aaeeenes 38
3311 MRAPI_MUTEX_CREATE ... 39

3.3.1.2 MRAPI_MUTEX_INIT_ATTRIBUTES ... 40

3.3.1.3 MRAPI_MUTEX_SET _ATTRIBUTE ... 41

3314 MRAPI_MUTEX_GET_ATTRIBUTEccooiiiieenree e 42

3.3.15 MRAPI_MUTEX _GET ..ttt 43

3.3.16 MRAPI_MUTEX_DELETEccoiiiiiiiiiieeee e 44

3.3.1.7 MRAPI_MUTEX_LOCKcciiiiiiiieiiie ittt 45

3.3.1.8 MRAPI_MUTEX_TRYLOCKteiiiiiiiiiieiiie it 46

3.3.19 MRAPI_MUTEX_UNLOCKcociiiiiiiiiiieiiie e 47

3.3.2 SEMAPNOTES .ot 48
3.3.21 MRAPI_SEM_CREATE ... 49

3.3.2.2 MRAPI_SEM_INIT_ATTRIBUTES ... 50

3.3.23 MRAPI_SEM_SET_ATTRIBUTE ..ottt 51

3.3.24 MRAPI_SEM_GET_ATTRIBUTE ...t 52

3.3.25 MRAPI_SEM_GET ...ttt 53

3.3.2.6 MRAPI_SEM_DELETE ...ttt 54

3.3.2.7 MRAPI_SEM_LOCK ...ooiiiiiiiiiiiiiie ittt 55

3.3.2.8 MRAPI_SEM_TRYLOCK ..ottt 56

3.3.2.9 MRAPI_SEM_UNLOGCKcotiiiiiieiiiieiieeniiee et 57

3.3.3 REAEIWIITET LOCKSeiiiiieii ettt ettt 58
3.3.3.1 MRAPI_RWL_CREATE ... 59

3.3.3.2 MRAPI_RWL_INIT_ATTRIBUTES........cci it 60

3.3.3.3 MRAPI_RWL_SET _ATTRIBUTE ...t 61

3.3.34 MRAPI_RWL_GET_ATTRIBUTE.......cce i 62

3.335 MRAPI_RWL _GET...cooiiiiiieeeeeeeeceteeeeeeeeeese e en s 63

3.3.3.6 MRAPI_RWL_DELETE ... 64

3.3.3.7 MRAPI_RWL_LOCK ..ottt 65

3.3.3.8 MRAPI_RWL_TRYLOCKotiiitiieiiiteiiiesiiie ettt 66

3.3.3.9 MRAPI_RWL_UNLOCK ...ttt 67

34 MEBIMOTY . 68
34.1] E=Tg=To 1Y =T 0 L] oY PP 69
34.11 MRAPI SHMEM_CREATEcoiiiiiiiieit ettt 70

3412 MRAPI_SHMEM_INIT_ATTRIBUTES ..o 71

3.4.1.3 MRAPI_SHMEM_SET_ATTRIBUTEccooviiiiiiieeeeeeeee 72

3414 MRAPI_SHMEM_GET_ATTRIBUTEccciiiiereeeee e 74

The Multicore Association November 15, 2010 Page 4 of 160

MRAPI| APl Specification V1.0

3.4.1.5 MRAPI_SHMEM_GETcttiiiiiiiiee ettt 75

3.4.1.6 MRAPI_SHMEM_ATTACH ...ttt 76

3.4.1.7 MRAPI_SHMEM_DETACH ...ttt 77

3.4.1.8 MRAPI_SHMEM _DELETE.......ccttiiiiitie ettt see et 78

3.4.2 REMOLE MEIMOIY ...t e e e e et e e e tn e e e aeaaees 79
3.4.2.1 MRAPI_RMEM_CREATEcciiiiiie ittt 80

3.4.2.2 MRAPI_RMEM_INIT_ATTRIBUTES ...ttt 82

3.4.2.3 MRAPI_RMEM_SET_ATTRIBUTEccciiiiiieiiiiie et 83

3.4.2.4 MRAPI_RMEM_GET_ATTRIBUTEcccoiiiiieiiiiie et 84

3.4.2.5 MRAPI_RMEM_GET ...ciiiiiiiie ittt ettt 85

3.4.2.6 MRAPI_RMEM_ATTACHttt 86

3.4.2.7 MRAPI_RMEM _DETACHcciiiiiie ittt 87

3.4.2.8 MRAPI_RMEM _DELETEccciiiiiie ittt ste e 88

3.4.2.9 MRAPI_RMEM_READootiiiiiiie ettt se et 89

3.4.2.10 MRAPI_RMEM_READ | ..cciiiiiiiiie ittt 91

3.4.2.11 MRAPI_RMEM _WRITE ..ottt ettt 93

3.4.2.12 MRAPI_RMEM_WRITE_| ciiiiiiiiiieiiiiie ettt 94

3.4.2.13 MRAPI_RMEM_FLUSHooiiiiiiiiiiiiie ettt 96

3.4.2.14 MRAPI_RMEM_SYNC ...ttt ettt 97

3.5 NON-BIOCKING OPEratiONScccoeiie e 98
3.5.1 MRAPT _TEST ..ttt ittt ettt st e e s e e s st e e s et e e e ensbe e e e enbeeeeennees 99

3.5.2 MRAPT WAIT L. e e e st e e e st e e e e snta e e e e e ntaeeeeenees 100

3.5.3 MRAPT WAIT _ANY Lottt s e e sae e e e st e e e e snba e e e s entae e e e enees 101

3.5.4 MRAPIT _CANCELctiiie sttt ettt e e et ae e e et e e e s etae e e e enees 102

3.6 1] 7= To £= - PRSI 103
3.6.1 MRAPI_RESOURCES _GET ...ttt e e e e nnnnneeeee s 104

3.6.2 MRAPI_RESOURCE_GET_ATTRIBUTEccvtiiiiiiiiiiiiiiee e eiveee e 105

3.6.3 MRAPI_DYNAMIC_ATTRIBUTE_START ...ccciitiiieiiiiie ettt 107

3.6.4 MRAPI_DYNAMIC_ATTRIBUTE_RESETccvtiiiiiiie ettt 108

3.6.5 MRAPI_DYNAMIC_ATTRIBUTE_STOPcccoiiiiieiiiiie ettt 109

3.6.6 MRAPI_RESOURCE_REGISTER_CALLBACKccccveiiiiiiieectiie et 110

3.6.7 MRAPI_RESOURCE_TREE_FREE.........cccceiiiiiii e 111

3.7 CONVENIENCE FUNCHIONSueiiiiiee ittt e e et e e e e e e s e bt e e e e e e e e anneeees 112
3.7.1 MRAPI_DISPLAY _STATUS ... ittt ste et aae e 113

R o N O BRSSPSR 114
B USE CaS S i 117
5.1 Simple Example of Creating Shared Memory Using Metadatacccccccoovcvvveeieeeeeiinennnen, 117
5.2 AULOMOLIVE USE CASE...eiiiieiiiiiiiiiiiiie e e e ettt et e e e s e st e e ee e e s e st eaeeeeseassteaeeeeeeeseannnennneeeens 118
5.2.1 CRATACTEIISTICS ...eeeiiie ettt e s e e e e e e s b 118
5211 72T 0 KT 0] = TP PP P PP PP PR PRPRPRPRPRPRON 118

5.2.1.2 CONLrOl TASK .. 118

5213 LOSE DALAcceeeieeieeeeeeeee e 118

5.2.1.4 TYPES Of TASKS ..o 118

5.2.15 Load BalanCe ... 118

5.2.1.6 Message Size and FreqQUENCYcocueeeiiiiieeeiiiiee et e sieeee e 118

5.2.1.7 SYNCAIONIZALION ... e 118

5.2.1.8 Shared MEMOTYueiiiiiiiii et 118

5.2.2 Key Functionality REQUINEMENESueieiiiiiee ittt 119
5221 (O] o110 I 1= TS PSSR 119

5.2.2.2 ANGIE TASK. ..ot 119

5.2.2.3 Data TasksSccooeiiiiiiiee 119

5.2.3 Context and CONSIIAINTScooiviiiiiiiiiieeeeeeeee et 119
5.2.3.1 OpPerating SYSIEM.....cociiiiiiiiieii et e e 119

5.2.3.2 Polling and INTEITUPLSeeieiieiiiiieie e 119

5.2.3.3 [= Lo 111U PRTURRR 119

5.24 MELFICS e 119
5.24.1 Latency of CONtrol TASKcocuieiiiiiiiiiiiiieee e 119

5.2.4.2 Number of Dropped Sensor Readings.......cccccvvvveeiiiiiiiieeneee e 119

The Multicore Association November 15, 2010 Page 5 of 160

MRAPI| APl Specification V1.0

5.2.4.3 Latencies of Data TasKS.......ccouiiiiiiiiiiieee e 119

5.2.4.4 COUE SIZE i 119

525 POSSIDIE FACIOMNGS ...eveieiiiiiiei ittt 120

5.2.6 MRAPI Requirements IMpliCatioNS...........cc.veeiiiiiieiiiiie e 120

5.2.7 MeENLAI MOUEIS ...t 120

5.2.8 MRAPI PSEUAOCOUEeeeeiiieiriieiiiee ettt 123

5.2.8.1 T TLEE= VLY F= o] o] 1 o SRR 123

5.2.8.2 Changes Required to Port to New Multicore Devices.........ccccceeeeenns 128

5.3 REMOLE MEMOIY USE CASES ...couuiiiiiiiiiiiiiitiiis ettt sttt e e st e bt e e e e e e easb e e e eeaeees 128
531 RemMOote MEmOrY USE CASE L.....uuuiiiiiiiiiiiiiiii ettt e e e e e e eee 128

53.2 Remote MemOory USE CaSE 2ouviiiiiiiiiiiiiieiee ettt 134

54 SYNCIONIZAION USE CASEeeiiiiiiiiiiiiiiee ettt ettt ettt e et e e et e e e s abb e e e e abreeeeans 138

55 NELWOTKING USE CASE....itiiieiiitiie ettt ettt ettt e et e e et e e e anb e e e e anbreeeeneee 138

5.6 METAAALA USE CASES .. uuuiiiiiieiiiiitiiiiie e e et e ettt ee e e e e e e ettt e e e e e e st b be e e e e e e s s aannbabeeeeaeeseannnbreaeeeaens 141
56.1 Dynamic Attribute EXamPplec.ooooiii e 141

5.6.2 mrapi_resource_get() EXAMPIESc.oveiiiiiiiiiiiiiee it 142

6. Appendix A: ACKNOWIEAGEMENTSoiiiiiiiie e 146
7. Appendix B: Header Files ... 147
7.1 (1T T= TN o P PP SUPPPTTRT 147

7.2 (TR arcY < R o NPT TP UUPPPPPTPTR PP 148

8. Appendix C: MRAPI LiCENSE AQIrEeMENTcoiiiiie ittt 158

The Multicore Association November 15, 2010 Page 6 of 160

MRAPI| APl Specification V1.0

Preface

This document is intended to assist software developers who are either implementing resource
management functions using MRAPI or writing applications that use MRAPI.

MRAPI was developed under the guidance of The Multicore Association (MCA) with participation by
many of the MCA member companies. This MRAPI specification fits within the roadmap defined by the

MCA. The first component of that roadmap was the Multicore Communications APl (MCAPI). MRAPI
and MCAPI share many concepts, constructs, and goals.

Definitions

AMP: Asymmetric multiprocessing, in which two or more processing cores having the same or different
architecture may be running the same or different operating systems (or no OS at all).

API: Application programming interface.

Blocking: A blocking function does not return until the function has completed or resulted in an error. A
thread-suspension mechanism is required for blocking calls.

Domain: An implementation of MRAPI includes one or more domains, each with one or more nodes.
The concept of domains is used consistently for all Multicore Associations APIs. A domain is
comparable to a subnet in a network.

Handle: An abstract reference by one node to an object managed by another node. Unlike a pointer, a
handle does not contain a literal address.

MCA: The Multicore Association.

MCAPI: Multicore Communications API Specification, defined by The Multicore Association.

MRAPI: Multicore Resource API Specification, defined by The Multicore Association.

MTAPI: Multicore Task API Specification, defined by The Multicore Association.

Node: An independent thread of control. It could be a process, thread, instance of an operating system,
hardware accelerator, processor core, or other entity with an independent program counter. Each node
can belong to only one domain. The concept of nodes applies consistently to all Multicore Associations
APIs.

Non-Blocking: A non-blocking function returns immediately, but the requested transaction completes in
a non-blocking manner. Remote memory is the only resource that supports non-blocking operations,
and the only non-blocking MRAPI calls are mrapi rmem read i() andmrapi rmem write 1i().
POSIX: Portable Operating System Interface, an API for Unix specified by the IEEE.

Resource: A processing core or chip, hardware accelerator, memory region, or 1/O.

Remote Memory: Memory that cannot be accessed using standard load and store operations. For
example, host memory is remote to a GPU core,

SoC: System-on-chip.

The Multicore Association November 15, 2010 Page 7 of 160

MRAPI| APl Specification V1.0

SMP: Symmetric multiprocessing, in which two or more identical processing cores are connected to a
shared main memory and are controlled by a single OS instance.

Timely: An operation is timely if it returns without having to block on any inter-processor communication
(IPC) to any remote nodes.

Related Documents

e Multicore Communications API (MCAPI) Specification, The Multicore Association.
e Multicore Task API (MTAPI) Specification, The Multicore Association (in progress).
e Multicore Programming Practices (MPP), The Multicore Association (in progress)..

The Multicore Association November 15, 2010 Page 8 of 160

MRAPI| APl Specification V1.0

1. Introduction

1.1 Overview

This Multicore Resource API (MRAPI) specification defines an API for application-level management of
shared resources in multicore embedded systems. It supports queries regarding static and dynamic
resources, and it supports system-level event notification such as power-savings states, device failures,
and hypervisor repartitioning. It allows coordinated concurrent access to system resources in situations
where (a) there are too few resources to dedicate to individual tasks or processors, and/or (b) the
runtime system does not provide a uniformly accessible mechanism for coordinating resource-sharing.

The managed resources include cores or chips, hardware accelerators, memory regions, and 1/O.
MRAPI supports the ability to declare and allocate or destroy shared memory regions, and to identify
nodes which have access to each region. MRAPI also provides application-level synchronization
primitives for coordinating access to shared resources.

The multiple cores may be homogeneous or heterogeneous and located on a single chip or on multiple
chips in a circuit board. MRAPI is scalable and can support virtually any number of cores, each with a
different processing architecture and each running the same or a different operating system, or no OS
at all. As such, MRAPI is intended to provide source-code compatibility that allows applications to be
ported from one operating environment to another well into the future.

1.1.1 MRAPI Goals

MRAPI provides essential capabilities with which applications can cooperatively manage shared
resources in multicore systems. MRAPI runtimes are not required to provide secure enforcement of
sharing policies. MRAPI intentionally stops short of being a full-featured dynamic resource manager
capable of orchestrating a set of resources to satisfy constraints on performance, power, and quality of
service. MRAPI (in conjunction with other Multicore Association APIs) can serve as a valuable tool for
implementing applications, as well as for implementing such full-featured resource managers and other
types of layered services. For these reasons, the following set of goals were used to weigh each MRAPI
feature:

¢ Small application-layer API, suitable for cores on a chip and chips on a board.

e Easy to learn and use.

e Incorporates an essential feature set.

e Supports lightweight and high-performance implementations.

e Does not prevent use of complementary approaches.

¢ Allows silicon providers to optimize their hardware.

¢ Allows implementers to differentiate their offerings.

e Can run on top of an OS, hypervisor, or bare metal.

e Can co-exist with hardware acceleration.

e Supports hardware implementations of the API.

e Does not require homogeneous cores, operating system, or memory architecture.

e Supports source-code portability.

The Multicore Association November 15, 2010 Page 9 of 160

MRAPI| APl Specification V1.0

1.1.2 The MRAPI Feature Set

Synchronization Primitives (Section 3.3):

e Mutexes: Binary primitives that may be provided by shared memory, a distributed runtime, or
other means.

e Semaphores: Counting primitives that provide more capability than mutexes, although at perhaps
a slight performance penalty.

¢ Reader and Writer Locks: More advanced primitives that give the ability to support multiple
readers concurrently while allowing only a single writer.

Memory Primitives (Section 3.4):

e Shared Memory: Allows an application to allocate and manage shared memory regions where
there is physical shared memory to support it, including special features which provide support for
requesting memory with specific attributes, and support for allocation based on a set of sharing
entities.

¢ Remote Memory: Allows an application to manage buffers that are shared but not implemented
on top of physical shared memory; transport may be via chip-specific methods such as DMA
transfers, Serial RapidlO (SRIO), or software cache. Remote memory primitives also provide
random access, scatter/gather, and hooks for software managed coherency.

Metadata Primitives (Section 3.6):

e These provide access to hardware information. They are not intended to be a facility for an
application to create and manage its own metadata. This additional functionality could be a
layered service or a future extension.

1.1.3 Existing Standards and APIs

The MRAPI working group chose to address specific areas of functionality related to the following
existing standards.

1.1.3.1 POSIX® Shared Memory

Shared memory is used to allow access to the same data by multiple threads of execution, which may
be on the same processor or on multiple processors, thereby avoiding copying of the data. The Portable
Operating System Interface (POSIX) standard provides a standard API for using shared memory,
including allocation, deletion, mapping and managing the shared memory. POSIX shared memory
generally provides this functionality within the scope of one operating system, across one or more
processor cores. This functionality is considered essential for multicore programming, but is only one
feature that MRAPI is intended to provide. The MRAPI working group added two additional features to a
shared memory API: (1) the ability for programmers to specify attributes of the memory to be shared (for
example on-chip SRAM versus off-chip DDR), and (2) the ability for programmers to specify which
elements of a multicore system would be seeking access to the shared memory segment such that
MRAPI could support shared memory for parts of multicore systems where physical shared memory is
non-uniformly accessible.

1.1.3.2 POSIX Mutexes and Semaphores

The POSIX standard provides two forms of semaphores: mutexes (binary semaphores), and
semaphores (counting semaphores).

Given the goals of MRAPI, the MRAPI working group considered POSIX mutexes and semaphores
(IEEE Standard 1003.1b) as having relevant functionality. However, the working group determined that
condition variables and signaling should be considered within the scope of the future Multicore Task API
(MTAPI) working group rather than the MRAPI working group. The rationale for this decision is that in
order to properly implement condition variables and signaling one would require the ability to manage

The Multicore Association November 15, 2010 Page 10 of 160

MRAPI| APl Specification V1.0

threads or processes, and this is what MTAPI will provide. Therefore the functionality should be
considered on the Multicore Association roadmap, but deferred until MTAPI becomes available.

11321 POSIX Mutexes

POSIX mutexes are declared as part of the POSIX threads (pthreads) package. These mutexes are
only guaranteed to work within a single process. It is possible on some systems to declare mutexes as
global by setting the process-shared attribute on the mutex, but implementations are not required to
support this.

The following mutex types are defined within the POSIX standard:

PTHREAD_MUTEX_NORMAL: This type of mutex does not detect deadlock. A thread attempting
to relock this mutex without first unlocking it shall deadlock. Attempting to unlock a mutex locked
by a different thread results in undefined behavior. Attempting to unlock an unlocked mutex
results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK: This type of mutex provides error checking. A thread
attempting to relock this mutex without first unlocking it shall return with an error. A thread
attempting to unlock a mutex which another thread has locked shall return with an error. A thread
attempting to unlock an unlocked mutex shall return with an error.

PTHREAD_MUTEX_RECURSIVE: A thread attempting to relock this mutex without first
unlocking it shall succeed in locking the mutex. The relocking deadlock which can occur with
mutexes of type PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple
locks of this mutex shall require the same number of unlocks to release the mutex before another
thread can acquire the mutex. A thread attempting to unlock a mutex which another thread has
locked shall return with an error. A thread attempting to unlock an unlocked mutex shall return
with an error.

PTHREAD_MUTEX_DEFAULT: Attempting to recursively lock this mutex results in undefined
behavior. Attempting to unlock this mutex if it was not locked by the calling thread results in
undefined behavior. Attempting to unlock this mutex if it is not locked results in undefined
behavior. An implementation may map this mutex to one of the other mutex types.

1.1.3.2.2 Mutex Analysis

After reviewing the POSIX pthreads API and semantics, the working group came to the following
conclusions:

POSIX mutexes cannot always be shared between processes. It depends on the implementation.

Forking a process that has POSIX mutexes has pitfalls when mutexes are process-shared. For
example, the new child could inherit held locks from threads in the parent that do not exist in the
child because fork always creates a child with one thread.

It is normally recommended that System V or POSIX.1b semaphores should be used for process-
to-process synchronization rather than pthreads mutexes, but this currently requires an SMP
operating system for multicore applications.

Mutexes are useful for managing access to a single resource, and they are simpler to use than
System V and POSIX semaphores.

Priorities and associated protocols (PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT,
PTHREAD_PRIO_PROTECT) are probably not something that could be guaranteed by MRAPI
until MTAPI is created. The MRAPI group chose to defer considering this feature of POSIX. This
currently puts the burden of dealing with priority inversion on the applications programmer.

The types attribute for error-checking is powerful and useful and is included in MRAPI.

The Multicore Association November 15, 2010 Page 11 of 160

MRAPI| APl Specification V1.0

For MRAPI, it was decided to cover a subset of POSIX mutex functionality along with the following new
requirements:

J Functionality equivalent to: pthread mutex_init, pthread mutex destroy,
pthread mutex lock, pthread mutex trylock, pthread mutex unlock.

e Mutex attributes for reporting basic deadlock detection.

¢ The ability to manage mutex attributes in a way that is consistent with MCAPI.

e Non-blocking operations in a way that is consistent with MCAPI.

e The default is for the mutex to be visible across processes and tasks.

¢ No requirement for shared memory or SMP OS.

e Priority inversion cannot be dealt with by MRAPI until the MTAPI specification is completed.

1.1.3.2.3 POSIX Semaphores

POSIX semaphores are declared as part of either the Realtime services or the XSl Interprocess
Communications services. XSl is the X/Open System Interface Extension, which is an extension to IEEE
1003.1b. The XSl interfaces are essentially the same as the System V IPC interfaces, which have been
widely supported across most Unix systems. Functionality marked XSl is also an extension to the ISO C
standard. Semaphores themselves are a POSIX option and are not required on all implementations.

1.1.3.24 POSIX Semaphores Analysis

After reviewing the semaphores API and semantics, the working group came to the following
conclusions:

e According to the POSIX Realtime API standard, semaphores may be process-private or process-
shared. There is substantial evidence that not all operating systems (notably Linux) support
process-shared Realtime semaphores, and the standard does not state that process-shared is
required.

¢ The Realtime API supports named and unnamed semaphores. Named and unnamed
semaphores have distinct operations, for example you must call sem close to close a named
semaphore and sem unlink to destroy a named semaphore, whereas sem destroy is used to
close and destroy an un-named semaphore.

e The POSIX standard does not specify whether XSI functions can interoperate with the realtime
interprocess communication facilities defined in the Realtime API.

e The Realtime API is much simpler to use, whereas the XSl interface is more tied to the operating
system, although it is clearly defined to be flexible and fast. The Realtime APl works on a single
sem_t identifier, whereas XSl uses arrays of semaphores and arrays of operations per API call.

e The sem wait, sem trywait, and sem timedwait functions provide simple deadlock-
detection errors.
For MRAPI, the working group decided:

¢ Keep only the concept of named semaphores, and match semantics of MCAPI for endpoints.

¢ Ignore the XSl type interface (avoid requiring the API user to create and manage a set of
semaphores and semaphore operations per call).

e Provide non-blocking operations in a way that is consistent with MCAPI.

e The default is visible across processes, tasks, etc.

e Do not require shared memory or SMP OS.

¢ Priority inversion cannot be dealt with by MRAPI until the MTAPI specification is completed.
¢ Provide primitive deadlock reporting.

The Multicore Association November 15, 2010 Page 12 of 160

MRAPI| APl Specification V1.0

1.1.3.3 Performance API (PAPI)

PAPI is a high-performance API that defines a common set of useful performance counters. PAPI
provides a high-level interface to start, stop, read, and register callbacks for counter overflow. PAPI
provides metadata about resources of a system, including resources such as number of cores, number
of counters, and shared libraries in use by an application.

PAPI also provides derived counters, such as IPC (Instructions Per Cycle), and timing and
measurement functions, such as wall-clock time consumed. It also provides mutexes, supports external
monitoring of counters associated with a process or thread, and management functions concerning
registering threads. PAPI has no memory management, has no concept of system partitioning, and the
metadata is limited with respect to the total resources in an SoC.

The MRAPI working group views the PAPI features for metadata and performance counters as being a
useful concept for the types of systems targeted by MRAPI.

1.1.34 IBM DaCS

IBM's Data Communication and Synchronization (DaCS) library provides a portable API for managing
distributed memory systems. It allows programmers to take advantage of the Cell processor's
Synergistic Processing Unit (SPU) DMA engines, while still being able to execute the program on
machines that do not have DMA engines. It provides functions for creating memory regions, registering
memory regions on multiple distributed processors, and copying data in and out of those memory
regions via DMA.

The MRAPI API shares several concepts with DaCS. In particular, both APIs provide functions for
creating memory regions, registering them with multiple processors, and performing DMA operations
between distributed shared memory and local memory. In order to minimize APl complexity, MRAPI
does not provide some features included in DaCS. In particular, MRAPI avoids the need to specify
permissions on memory regions and limit DMA operations to linear or strided data arrays.

1.1.35 GASNet Specification

The Global-Address Space Networking (GASNet) specification is an APl aimed at implementers of
global-address-space languages such as Unified Parallel C and Titanium. Unlike MRAPI, GASNet is
geared towards single-program multiple-data (SPMD) high-performance computing applications, rather
than embedded systems.

GASNet is divided into a small core API, and a richer extended API. The core API consists of functions
for job control, message passing (based on Active Messages), and atomicity control. The extended API
enriches this functionality with memory-to-memory data transfer functions, lower-level register-to-
memory operations, barrier synchronization, and threading support. The extended API has been
designed to be implementable using only the core API, and the GASNet designers provide a portable
reference implementation of the extended API in terms of the core API. However, high-performance
GASNet implementations are expected to efficiently implement as much of the extended API as
possible, exploiting platform-specific characteristics.

The GASNet memory-to-memory data transfer functionality shares similarities with remote memory
operations in MRAPI. Unlike MRAPI, GASNet does not support scatter/gather operations. On the other
hand, GASNet provides more sophisticated synchronization primitives for non-blocking operations, and
supports register-to-memory copies. The extended GASNet API includes barrier synchronization, which
is out of scope for MRAPI (as discussed in Section 1.1.3.2, coordination between processes is part of
the scope of MTAPI). Another significant distinction is that GASNet provides for both message passing
and remote memory operations. Message passing is not part of MRAPI, which is intended to co-exist
with a message passing APl such as MCAPI.

The Multicore Association November 15, 2010 Page 13 of 160

MRAPI| APl Specification V1.0

1.1.3.6 ARMCI Library

The Aggregate Remote Memory Copy Interface (ARMCI) library supports remote-memory access.
ARMCI has been designed to be general-purpose and portable, but it is aimed at library implementers
rather than application developers.

ARMCI shares similarities with remote memory operations in MRAPI. Unlike MRAPI, ARMCI provides
guarantees on the order of remote memory operations issued by a given process. ARMCI uses
generalized 1/0O vectors to support movement of multiple data segments between arbitrary remote and
local memory locations. This is more general than the form of remote memory operations supported by
MRAPI; the structure of MRAPI operations matches the ARMCI strided format, a special class of
generalized I/O vectors in which local and remote memory regions are regularly spaced. ARMCI
supports put and get and remote accumulate operations. This functionality is mainly useful in the high-
performance and scientific computing domains (accumulation is also featured in the MPI-2 one-sided
communication API). Accumulate operations are not present in MRAPI, which is not specifically geared
towards this application domain.

1.2 History

Multicore programming shares many concepts with parallel and distributed computing. Multiple
computing elements interact to accomplish a given task. In order to implement this, programmers need
basic capabilities for synchronizing the various threads of computation and coordinating accesses to
resources. These problems have been solved for traditional distributed systems using various forms of
middleware, and for multicore desktops and servers by facilities in operating systems enabled for
Symmetric Multiprocessing (SMP).

As multicore computing extends into embedded domains, many aspects of computing heterogeneity
emerge. This limits the ability of programmers to use middleware designed for distributed systems, or to
rely on an SMP operating system. These forms of heterogeneity include memory architectures,
instruction sets, general-purpose cores, special-purpose cores (or hardware acceleration), and even
operating systems. Yet multicore programmers still face the same programming challenges.
Semantically there is little difference between this computing context and the distributed or SMP
context. While it could be argued that existing standards for resource management would suffice in the
embedded context if re-implemented, two more concerns serve as barriers to this approach: (1) the
requirements of distributed systems and SMP systems demand overheads of footprint and execution
times that are unnecessary in closely-coupled and reliable embedded systems, and (2) embedded
systems have significant additional requirements not encompassed by existing standards.

MRAPI is designed to address these issues by embracing the proven features of existing standards,
while explicitly supporting the heterogeneous embedded multicore computing context—including
combinations of hardware or software heterogeneity; for example, different kinds of cores and
accelerators, or different operating systems.

The Multicore Association November 15, 2010 Page 14 of 160

MRAPI| APl Specification V1.0

2. MRAPI Concepts

The major MRAPI concepts are covered in the following sections. The concepts and supporting data
types are defined to meet the goals stated in Section 1.1.1, including source code portability.

2.1 Domain

An MRAPI system is composed of one or more MRAPI domains. An MRAPI domain is a unique system
global entity. Each MRAPI domain comprises a set of MRAPI nodes (Section 2.2). An MRAPI node may
only belong to one MRAPI domain, while an MRAPI domain may contain one or more MRAPI nodes.
The concept of a domain is shared amongst Multicore Association APIs, and it must be consistent (i)
within any implementation that supports multiple APIs, and (ii) across implementations that require
interoperability.

2.2 Nodes

An MRAPI node is an independent thread of control, such as a process, thread, processor, hardware
accelerator, or instance of an operating system. A given MRAPI implementation specifies what kind of
thing constitutes a node for that implementation.

The intent is not to have a mixture of node definitions in the same implementation (or in different
domains within an implementation). Note that if a node is defined as a thread of execution with its
private address space (like a process), a core with a single unprotected address space OS is equivalent
to a node, whereas a core with a virtual memory OS can host multiple nodes.

The definition of a node is flexible because this allows applications to be written in the most portable
fashion supported by the underlying hardware, while at the same time supporting more general-purpose
multicore and manycore devices. The definition allows portability of software at the interface level (e.g.,
the functional interface between nodes). However, the software implementation of a particular node
cannot (and often should not) necessarily be preserved across a multicore SoC product line (or across
product lines from different silicon providers) because a given node's functionality may be provided in
different ways, depending on the chosen multicore SoC.

The mrapi initialize () call takes node number and domain number arguments, and an MRAPI
application may only callmrapi initialize () once per node. Itis an error to call

mrapi initialize () multiple times from a given thread of control unless mrapi finalize () is
called between such calls. A given MRAPI implementation will specify what thread of control is a node
for that implementation.

The concept of nodes in MRAPI is shared with other Multicore Association API specifications.
Therefore, implementations that support multiple MCA APIs must define a node in exactly the same
way, and initialization of nodes across these APIs must be consistent. In the future, the Multicore
Association will consider defining a small set of unified API calls and header files that enforce these
semantics.

2.3 Synchronization Primitives

The MRAPI synchronization primitives include mutexes, semaphores, and reader/writer locks.

Mutexes are intended to be simple binary semaphores for exclusive locks. Semaphores allow for
counting locks. The reader/writer locks can be used to implement shared (reader) and exclusive (writer)

The Multicore Association November 15, 2010 Page 15 of 160

MRAPI| APl Specification V1.0

locking. Mutexes are intended to support very fast, close-to-the-hardware implementations, whereas
semaphores and reader/writer locks provide more flexibility to the application programmer at the
expense of some performance.

All of the synchronization primitives are supported across MRAPI domains by default, but this may have
a performance impact (e.g., chip-to-chip synchronization will necessarily be slower). Sharing across
domains can be disabled by setting the MRAPT DOMAIN SHARED attribute of a synchronization primitive
to MRAPI FALSE (default is MRAPT TRUE).

2.3.1 Mutexes

MRAPI mutexes are binary, they support recursion (but that is not the default), and they are intended to
be the closest match to underlying hardware acceleration in many systems. Recursive locking is allowed
if the locking node already owns the lock, and if the mutex attributes have been set up to allow
recursion. Recursive locking means that once a mutex is locked, it can be locked again by the lock
owner before unlock is called. For each lock, a unique lock key is returned. This lock key must be
provided when the mutex is unlocked. The implementation uses the keys to match the order of the lock
and unlock calls.

Individual mutex attributes may vary, but they must be set before mutex creation, and they cannot be
altered later.

2.3.2 Semaphores

Semaphores, unlike mutexes, support counting locks. Therefore semaphores are differentiable in terms
of performance and other features—mutexes are binary, and some hardware has hardware acceleration
for this, whereas semaphores have richer functionally but may have slower performance.

2.3.3 Reader/Writer Locks

The MRAPI reader and writer locks provide a convenient mechanism for optimized access to critical
sections of code that are not always intended to modify shared data. These primitives support multiple
read-only accessors at any given time, or one exclusive accessor. This supports the Reader/Writer
Locks (RWL) software pattern that is commonly used for cases where there are more readers than
writers. In order to guarantee fairness, MRAPI implementations must enforce serialization of requests,
such that that no new read lock will be granted while a blocked write lock request is pending.

2.4 Memory

MRAPI supports two different notions of memory: shared memory and remote memory. Shared memory
is provided in MRAPI to support applications that are deployed on hardware which has physically
shared memory with hardware-managed cache coherency (coherent shared memory), but which cannot
rely on a single operating system to provide a coherent shared-memory allocation facility. Implementing
this can be hard, and discussions are ongoing with the MCA Hypervisor working group to understand a
potential relationship for supporting coherent shared memory. Remote memory is provided for systems
that require the use of explicit CPU, DMA, or other non-CPU mechanisms to move data between
memory subsystems, or which do not support hardware-managed cache coherency. The MRAPI
specification allows for implementations to support only those types of MRAPI memory that are feasible
for a given system, but the implementation must provide all API entry points and indicate via error
reporting that a given request cannot be satisfied.

24.1 Shared Memory

The functionality provided by the MRAPI shared memory API is similar to that of POSIX shared
memory, but MRAPI extends the functionality beyond the scope of a single operating system. It provides

The Multicore Association November 15, 2010 Page 16 of 160

MRAPI| APl Specification V1.0

the ability to manage the access to physically coherent shared memory between heterogeneous threads
of execution that may be on different operating systems and different types of cores.

2.4.2 Remote Memory

Modern heterogeneous multicore systems often contain multiple memory spaces, where data is moved
between memory spaces via non-CPU mechanisms such as direct memory access (DMA). One
example is the Cell Broadband Engine processor: the Power Processor Element (PPE) is a standard
Power Architecture™ core connected to main memory, but the processor also contains eight Synergistic
Processor Elements (SPESs) each of which has a small local store. Data must be copied to and from
SPE local stores via explicit DMA operations.

Remote memory might be implemented in many different ways, depending on the underlying hardware.
Sometimes actual copying (i.e., read or write operations) are needed, sometimes just software initiated
cache operations are needed (i.e., invalidate or flush). However, the purpose of an API should be to
hide these differences in order to enable portable and hardware independent software. So, in order to
access data, an API call should be made that might cause either a "read" and "sync", or some
combination (depending on the underlying hardware). The user should not need to care. The software
layer that constitutes the API should make sure the necessary operations are performed.

From the point of view of a given processing element, remote memory is memory that cannot be
accessed via standard load and store operations. For example, host memory is remote to a GPU core;
the local store of a Cell SPE is remote to the other SPEs or the PPE.

MRAPI offers a set of API functions for manipulating remote memory. Like MRAPI shared memory, the
API provides functions for creating, initializing, and attaching to remote memory. Unlike MRAPI shared
memory, the API provides functions for reading from and writing to remote memory.

The API does not place restrictions on the mechanism used for data transfer. However, catering to the
common case where it is desirable to overlap data movement with computation, the API provides non-
blocking read and write functions. In addition, flush and sync primitives are provided to allow support for
software-managed caches. The API read and write functions also support scatter/gather accesses.

For MRAPI users and implementers concerned about performance of the flush and synch functions, the
MRAPI working group recommends use of multiple memory regions; the implementation of the flush
routine should have the semantics of "anything that is dirty should be pushed back to memory", versus
“everything should be pushed back to memory”.

The Multicore Association November 15, 2010 Page 17 of 160

MRAPI| APl Specification V1.0

Implementation-Specific

Read/Write ﬁ

v
P | NodeO

il

[}
: :
: '
' DMA .
(] . 0
' Engine H
' 11
[]
Local ! A/ A | Local Local ;
Memory » . . Memory Memory
. ' 0 > Software
v N \ 4 Cache
rmem | @geeeeeqes -: :- - Local Local
Buffer Buffer | Buffer
A A
Native Native Native
Read/Write Read/Write Read/Write
MRAPI MRAPI
Read/Write

‘ mrapi_rmem_handle ‘

gL
-

" mrapi_rmem_handle ‘

A
P | Node2

Core2

Nodel ptr
Core0 Corel
Legend
<«—)» Program Data Access
< --=)p Data Movement

MRAPI Calls

MRAPI Implementation Activity

Figure 1. Remote Memory Concepts

Figure 1 depicts the remote memory concepts in MRAPI. Access semantics are per remote memory
(rmem) buffer instance, as follows:

Strict Semantics: The type of MRAPI access (such as DMA or software cache) is defined at the

time a rmem buffer is created. All MRAPI accesses to that rmem buffer must be of a uniform type.
Each client of the buffer specifies an access type with the mrapi rmem get () callanditis an
error to request an access type other than that which was used to create the buffer.

Any Semantics: The type of MRAPI access (such as DMA or software cache) is set to
MRAPI RMEM ATYPE ANY at the time the rmem buffer is created. When a client handle attaches,
it may specify any access type supported by the MRAPI implementation. Different types of
accesses are supported concurrently. (Note that MRAPI RMEM ATYPE ANY is only allowed for
buffer creation; clients must call get using a specific access type, e.g.,
MRAPI RMEM ATYPE DEFAULT, or other types provided by the implementation, such as DMA)

Local pointer-based read/write is always allowed, limited to access of local target buffers on clients.
However, coherency issues must be managed by the application using MRAPI flush and synch calls
(Sections 3.4.2.13 and 3.4.2.14). MRAPI implementations must guarantee that the effect of a synch
operation must be complete before the next local read/write operation on the remote memory segment,
and that the flush operation must block until it has completed.

The Multicore Association

November 15, 2010

Page 18 of 160

MRAPI| APl Specification V1.0

Remote accesses (reads or writes) always result in a copy and must use MRAPI calls. Implementations
may define multiple access types (depending on underlying silicon capabilities), but must provide
MRAPI RMEM ATYPE DEFAULT, which has strict semantics and is guaranteed to work.

2.5 Metadata

MRAPI provides a set of API calls designed to allow access to information regarding the underlying
hardware context an application is running on. These capabilities are described in the following
sections.

251 Metadata Resource Data Structure

Acalltomrapi resources_get () returns a data structure of type mrapi resource_t, see Section
2.11.4. This data structure is provided in the form of a tree containing the set of resources that are
visible to the calling MRAPI node. Each node in the tree represents a resource in the system, and each
node contains attributes that provide additional information about a given resource. The resource tree
may be optionally filtered by the subsystem filter input parameter. Examples of such filters include
CPU, cache, and hardware accelerators. An MRAPI implementation must define what filters it can
provide as an enumerated type.

The resource data structure can contain hierarchical nodes in addition to the resource nodes
themselves. For example, the concept of a core complex, which could contain multiple cores, would be
represented as a parent node to the core nodes in the resource tree.

During initialization MRAPI may read in the system resources from a data file which may have a tree
structure, such as XML or a device tree, so it is convenient to represent the resource data structure as a
tree. Alternatively, the resources could be statically compiled into the MRAPI implementation.

See Section 5.1 for a use case and example code for getting and navigating a resource tree.

2.6 Attributes

Attributes are provided as a means of extension for the API. Different implementations may define and
support additional attributes beyond those pre-defined by the API. In order to promote portability and
implementation flexibility, attributes are maintained in an opaque data structure that may not be directly
examined by the user. Each resource (e.g., mutex, semaphore) has an attributes data structure
associated with it, and many attributes have a small set of predefined values that must be supported by
MRAPI implementations The user may initialize, get, and set these attributes.

If the user wants default behavior, the intention is that they should not have to call the initialize, get, and
set attribute functions. However, if the user wants non-default behavior, the sequence of events should
be as follows:

1. mrapi <resource> init_ attributes ():Returns an attributes structure with all attributes
set to their default values.

2. mrapi <resource> set attribute () (Repeat for all attributes to be set): Sets the given
attribute in the attributes structure parameter to the given value.

3. mrapi <resource> create(): Passes the attributes structure modified in the previous step
as a parameter to this function.

After a resource has been created, its attributes may not be changed.

At any time, the user can call mrapi <resource> get attribute () to query the value of an
attribute.

The Multicore Association November 15, 2010 Page 19 of 160

MRAPI| APl Specification V1.0

For a use case in which attributes are customized, see section: 5.1.

2.7 Sharing Across Domains

By default, most of the MRAPI primitives are shared across MRAPI domains (Section 2.1).
Implementations may suffer a performance impact for resources that are shared across domains.

The following MRAPI primitives are shared across domains by default: mutexes, semaphores,
reader/writer locks, and remote memory. For any of these primitives, you can disable sharing across
domains by setting the MRAPI DOMAIN SHARED attribute to MRAPI FALSE and passing it to the
corresponding * create () function.

For the remaining primitive—MRAPI shared memory—the determination of which nodes it can be shared
with (regardless of their domains) is specified in the nodes list that is passed in when the shared
memory is created.

2.8 Waiting for Non-Blocking Operations

The API has blocking, non-blocking, and single-attempt blocking variants for many functions. The non-
blocking variants have “ i” appended to the function name to indicate that the function call will return
immediately but the requested transaction will complete in a non-blocking manner. The single-attempt
blocking functions will have the word "try" in the function name (for example, mrapi mutex trylock).
Remote memory is the only resource that supports non-blocking variants (for reads/writes).

The non-blocking versions fill in an mrapi request t object and return control to the user before the
requested operation is completed. The user can then use the mrapi test (), mrapi wait (), and
mrapi wait any () functions to query the status of the non-blocking operation. The mrapi test ()
function is non-blocking whereas the mrapi wait () and mrapi wait any () functions will block
until the requested operation completes or a timeout occurs.

Some blocking functions may have to wait for system events—e.g. buffer allocation or for data to arrive—
and the duration of the blocking will be arbitrarily long (and may be infinite), whereas other blocking
functions do not need to wait for system events and can always complete in a timely fashion, with a
success or failure. Single-attempt blocking functions that complete in this timely fashion include

mrapi mutex trylock(),mrapi sem trylock(),mrapi rwl trylock().

If a buffer of data is passed to a non-blocking operation (for example, to mrapi rmem write 1i())
that buffer may not be accessed by the user application for the duration of the non-blocking operation.
That is, after a buffer has been passed to a hon-blocking operation, the program may not read or write
the buffer until mrapi test (), mrapi wait (), ormrapi wait any () have indicated completion,
oruntiimrapi cancel () has canceled the operation.

2.9 Error Handling Philosophy

Error handling is a fundamental part of the MRAPI specification. However, some accommodations have
been made to support trading-off completeness for efficiency of implementation. For example, some API
functions allow implementations to optionally handle errors. Consistency and efficient coding styles also
govern the design of the error handling. In general, function calls include an error code parameter used
by the API function to indicate detailed status. In addition, the return values of several API functions
indicate success or failure, which enables efficient coding practice. A parameter of type

mrapi status_t will encode success or failure states of API calls. MRAPI NULL is a valid return
value for mrapi status_t; it can be used for implementation optimization.

The Multicore Association November 15, 2010 Page 20 of 160

MRAPI| APl Specification V1.0

If a process or thread attached to a node were to fail, it is generally up to the application to recover from
this failure. MRAPI provides timeouts for the mrapi wait () and mrapi wait any () functions, and
anmrapi cancel () function to clear outstanding non-blocking requests at the non-failing side. It is
also possible to reinitialize a failed node, by first calling mrapi finalize ().

2.10 Timeout and Cancellation Philosophy

MRAPI provides timeout functionality for its non-blocking calls through the timeout capability of the
mrapi wait () and mrapi wait any () functions. Many blocking-function implementations have
timeout t parameters. Setting the timeout to 0 means a function call will not time out. Setting it to
MRAPI INFINITE means it will eventually time-out but only after the maximum number of tries.

MRAPI also provides cancellation functionality for its non-blocking calls through the mrapi cancel ()
function.

2.11 Data Types

MRAPI uses predefined data types for maximum portability. The predefined MRAPI data types are
defined in the following subsections. To simplify the use of multiple MCA (Multicore Association) APIs,
some MRAPI data types have MCA equivalents and some MRAPI functions will have MCA-equivalent
functions that can be used for multiple MCA APIs. An MRAPI implementation is not required to provide
MCA-equivalent functions.

In general, APl parameters that refer to MRAPI entities are opaque handles that should not be
examined or interpreted by the application program. Obtaining a handle is done either via a create
function or a get function. Create and get functions require MRAPI ID types (see Sections 2.11.1,
2.11.2,2.11.4,2.11.6, 2.11.13) to be passed in and will return a handle (see Sections 2.11.5, 2.11.7,
2.11.8,2.11.10, 2.11.11) for use in all other function calls related to that MRAPI object.

2.11.1 mrapi_domain_t

The mrapi domain_t type is used for MRAPI domains. The domain id scheme is implementation-
defined. For application portability we recommend using symbolic constants in your code. The
mrapi domain t hasanmca domain t equivalent.

2.11.2 mrapi_node_t

The mrapi node_ t type is used for MRAPI nodes. The node numbering is implementation-defined.
For application portability we recommend using symbolic constants in your code. The mrapi node t
has anmca_node_t equivalent.

2.11.3 Initialization Parameters and Information

Initialization parameters allow implementations to configure the MRAPI runtime. A parameter allows
implementations to provide information about the MRAPI runtime—both MRAPI-specified and
implementation-specific information.

2.11.3.1 mrapi_param_t
Initialization parameters will vary by implementation, and may include specifications of the amount of

resources to be used for a specific implementation or configuration, such as the maximum number of
nodes.

The Multicore Association November 15, 2010 Page 21 of 160

MRAPI| APl Specification V1.0

2.11.3.2 mrapi_info_t

The informational parameters include MRAPI-specified information as outlined below, as well as
implementation specific information. Implementation specific information must be documented by the
implementer.

MRAPI-defined initialization information:

e mrapi version: MRAPI version. The three last (rightmost) hex digits are the minor number,
and those left of the minor number are the major number.

e organization_ id:Implementation vendor or organization ID.

e implementation version:Vendor version. The three last (rightmost) hex digits are the minor
number, and those left of the minor number are the major number.

e number of domains:Number of domains allowed by the implementation.

e number of nodes: Number of nodes allowed by the implementation.

2.11.4 mrapi_resource_t

The mrapi resource t type is used to represent a resource in an MRAPI system. It is an opaque
data type, with the exception of four elements: (1) name: a null-terminated C-style string containing the
name of this resource, (2) resource_type: the type, (3) children: array of

mrapil resource t*,and(4) child count: the number of elements that are in the children array.
These elements allow a set of resources to be arranged in a tree data structure that can be walked by
the programmer using the children and child count elements. The opaque section of the data
structure contains attributes of the given resource. Access to attributes of the mrapi resource t type
is through API calls defined in Section 3.6.

Figure 2 shows a mrapi resource_t tree with a root node and two children.

The Multicore Association November 15, 2010 Page 22 of 160

MRAPI| APl Specification V1.0

children([0]
mrapi resource t* root » name
resource_type
\ 4
name
OPAQUE attributes
resource_ type
children(]
OPAQUE attributes
child count (=0)
mrapi resource t* children([]
»
int child count (=2) children(l] name
resource_type
OPAQUE attributes
children(]
child count (=0)

Figure 2. An mrapi_resource_t Tree

2.11.5 mrapi_mutex_hndl _t

The mrapi mutex hndl t typeis used to lock and unlock a mutex. MRAPI routines for creating and
using the mrapi mutex hndl t type are covered in Section 3.3.1. The mrapi mutex hndl tisan
opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type as this can
result in non-portable application code.

2.11.6 mrapi_key t

The mrapi key t type is used to support recursive locking and unlocking for mutexes (see Section
3.3.1). The key is passed to the lock call and the system will fill in a unique key for that lock. The key is
passed back on the unlock call.

2.11.7 mrapi_sem_hndl _t

The mrapi sem hndl t typeis used to lock and unlock a semaphore. MRAPI routines for creating
and using the mrapi sem hndl t type are covered in Section 3.3.2. The mrapi sem hndl tis an
opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type as this can
result in non-portable application code.

The Multicore Association November 15, 2010 Page 23 of 160

MRAPI| APl Specification V1.0

2.11.8 mrapi_rwl_hndl_t

Themrapi rwl hndl t typeis used to lock and unlock a reader/writer lock. MRAPI routines for
creating and using the mrapi rwl hndl t type are covered in Section 3.3.3. The
mrapi_ rwl hndl tis an opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type, as this can
result in non-portable application code.

2.11.9 mrapi_rwl_mode_t

The mrapi rwl mode t type is used to specify the type of reader/writer lock you are attempting to
lock. The values are MRAPTI READER (shared) or MRAPT WRITER (exclusive). See Section 3.3.3 for the
API calls that require this parameter.

2.11.10 mrapi_shmem_hndl_t

The mrapi shmem hndl t type is used to access shared memory. MRAPI routines for creating and
using the mrapi shmem hndl t type are covered in Section 3.4.1. The mrapi shmem hndl tisan
opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type, as this can
result in non-portable application code.

2.11.11 mrapi_rmem_hndl _t

The mrapi rmem hndl t type is used to access remote memory. MRAPI routines for creating and
using the mrapi rmem hndl t type are covered in Section 3.4.2. The mrapi rmem hndl tisan
opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type, as this can
result in non-portable application code.

2.11.12 mrapi_rmem_atype t

Themrapi rmem atype t type is used to specify the access type to be used for remote memory (see
Section 2.4.2 and Section 3.4.2). Access semantics are per remote-memory buffer instance, and are
either strict (meaning all clients must use the same access type), or any (meaning that clients may use
any type supported by the MRAPI implementation). Implementations may define multiple access types
(depending on underlying silicon capabilities), but must provide at minimum:

MRAPI RMEM ATYPE ANY, which has any semantics, and MRAPI RMEM ATYPE DEFAULT, which has
strict semantics. MRAPI RMEM ATYPE ANY is only valid for remote-memory buffer creation; clients
must use MRAPI RMEM ATYPE DEFAULT or another type of access mechanism provided by the
MRAPI implementation (for example DMA).

2.11.13 Identifiers

The following types are used to get shared resources:
e mrapi mutex id t
e mrapi sem id t
e mrapi shmem id t

e mrapi rmem id t

The Multicore Association November 15, 2010 Page 24 of 160

MRAPI| APl Specification V1.0

These ID types are only used to get handles to the associated types of MRAPI entities.

e These IDs may either be known a priori or passed as messages to the other nodes.

e The implementation defines what is invalid. For any identifier, mrapi_x id (for example
mrapi mutex id t, where X=mutex) there is a pair of corresponding identifiers in the
MRAPI header file—MRAPI MAX X IDand MRAPI MAX USER X ID-that can be examined by
the application writer to determine valid ID ranges. MRAPI also supports MRAPI X ID ANY (as
in MCAPI endpoint creation). Thus, user-specified IDs can range from
0..MRAPI MAX USER X IDand ‘ANY’idsrange from MRAPI MAX USER X ID+1
MRAPI MAX X ID

¢ The user-specified space is disjoint from the ANY space to avoid race conditions for the user-
specified IDs.

2.11.14 Scalars

The following scalar types are used for signed and unsigned 64-, 32-, 16-, and 8-bit scalars:
e mrapi uinted t
e mrapi uint32 t
e mrapi uintl6 t
e mrapi uint8 t
e mrapi int64 t
e mrapi int32 t
e mrapi intlé t

e mrapi int8 t

2.11.15 mrapi_request _t

The mrapi request t type is used to record the state of a pending non-blocking MRAPI transaction
(see Section 3.5). Non-blocking MRAPI routines exist only for reading and writing remote memory. An

mrapi request t can only be used by the node it was created on. The mrapi request t hasan

mca_request_t equivalent.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type, as this can
result in non-portable application code.

2.11.16 mrapi_status_t

The mrapi status_t type is an enumerated type used to record the result of an MRAPI API call. If a
status can be returned by an API call, the associated MRAPI API call will allow a mrapi status_t to
be passed by reference. The API call will fill in the status code, and the APl user may examine the
mrapi_ status_t variable to determine the result of the call. The mrapi status_t has an
mca_status_t equivalent.

2.11.17 mrapi_timeout_t

The mrapi timeout t type is an unsigned scalar type used to indicate the duration that an

mrapi wait () or mrapi wait any () API call will block before reporting a timeout. The units of the
mrapi timeout t data type are implementation-defined because mechanisms for time keeping vary
from system to system. Applications should not rely on this feature for satisfaction of realtime
constraints because its use will not guarantee application portability across MRAPI implementations.
The mrapi timeout t data type is intended only to allow for error detection and recovery. The

The Multicore Association November 15, 2010 Page 25 of 160

MRAPI| APl Specification V1.0

mrapi timeout t hasanmca timeout t equivalent. The reserved values are O for do not block at
all, and MAX (unsigned 32-bit) for MRAPI INFINITE.

2.11.18 Other MRAPI Data Types

MRAPI defines its own integer, Boolean and other types, some of which have MCA equivalents. See the
header files on page 147 of this document for specifics on these data types.

2.12 MRAPI Compatibility with MCAPI

The MRAPI working group is following in the footsteps of the MCAPI working group. Therefore, this
specification has adopted similar philosophies and the same style for the API, data types, etc. Because
MRAPI and MCAPI are part of the larger Multicore Association roadmap, the working group expended
great effort to ensure that MRAPI functionality is orthogonal to MCAPI functionality while making sure
they are interoperable (for example, we had discussions around shared memory for MRAPI and zero
copy messaging for MCAPI.)

2.13 Application Portability Concerns

The MRAPI working group desires to enable application portability but cannot guarantee it. The guiding
principles that should be used by application writers are:

e Write as much of the application in as portable a fashion as possible.

e Encapsulate optimizations for efficiency or to take advantage of specialized dedicated hardware
acceleration where possible and necessary.

The end result of this approach should be that, from a given MRAPI node's perspective, it should not be
possible nor required for that node to know whether it is interacting with another node within the same
process, on the same processor, or even on the same chip. A given node should not know or care
whether another node, with which it is interacting, is implemented in hardware or software.

The MRAPI working group believes that this approach will allow portability of software to be maintained
at the interface level (e.g., the functional interface between nodes). However, the software
implementation of a particular node cannot (and often should not) necessarily be preserved across a
multicore SoC product line. or across product lines from different silicon providers, because a given
node's functionality may be provided in different ways, depending on the chosen multicore SoC. For
more on MRAPI nodes see Section 2.2.

2.14 Implementation Concerns

2.14.1 Thread-Safe Implementations

MRAPI implementations are assumed to be reentrant (thread-safe). Essentially, if an MRAPI
implementation is available in a threaded environment, then it must be thread-safe. MRAPI
implementations can also be available in non-threaded environments. The provider of such
implementations will need to clearly indicate that the implementation is not thread-safe.

2.15 Potential Future Extensions

With the goal of implementing MRAPI efficiently, the API has been kept simple. This has the potential
for adding more functionality on top of MRAPI later. Some specific areas for adding functionality include
read/copy/update (RCU) locks, non-owner remote memory allocation, application-level metadata,

The Multicore Association November 15, 2010 Page 26 of 160

MRAPI| APl Specification V1.0

locking of resource lists, and informational functions for debugging, statistics (optimization), and status.
These areas are strong candidates for future extensions, and they are briefly described in the following
subsections.

2.15.1 RCU (read, copy, update) locks

Although this feature is common in certain SMP operating systems, it is not clear that the feature scales
well to embedded and/or non-SMP contexts. If research currently underway at various universities
dispels this concern, then RCU locks may be a feature worth adding to MRAPI.

2.15.2 Non-Owner Remote Memory Allocation

Certain use cases considered by the working group indicated the usefulness of giving a node the ability
to obtain memory from a different node. After consideration, the working group determined that the API
could be kept simple and this ability could be satisfied by using MCAPI messaging to allow one node to
ask the other node to allocate memory on its behalf. In the future, if this proves to be too inefficient for
real-world application scenarios, we may consider adding this feature.

2.15.3 Application-Level Metadata
Application-level metadata can be used for rich higher-level functionality. The MRAPI working group

believes this should be a layered service that can be built using a combination of MCAPI and MRAPI
features. If this proves to be difficult in the future, we may consider adding this feature.

2.15.4 Locking of Resource Lists
While similar APIs for resource management provide functions for locking lists of resources, the MRAPI
working group currently believes this can be done well enough with mutexes and semaphores,

especially given that MRAPI cannot enforce such locks (being a cooperative sharing API). If in the
future it is proven we were mistaken, we may consider adding this feature.

2.15.5 Debug, Statistics and Status functions

Support functions providing information for debugging, optimization and system status are useful in
most systems. This is worth future consideration and would be a valuable addition to MRAPI.

2.15.6 Multiple Semaphore Lock Requests

It may be useful to add a feature that allows allocation of multiple counts of semaphore at once, instead
of recursively calling the 1ock ().

2.15.7 Node Lists for Remote Memory Creation Routines

We may wish to add a node list parameter to the shared-memory creation routines. This would provide
symmetry with the shared memory routines.

The Multicore Association November 15, 2010 Page 27 of 160

MRAPI| APl Specification V1.0

3. MRAPI API

The MRAPI API is divided into five major parts:

e General API functions

¢ Mutex, semaphore, and reader/writer lock functions
¢ Memory-related functions

e Metadata functions

¢ Non-blocking operations

The following sections enumerate the API calls for each of these five major parts.

3.1 Conventions

MRAPI IN and MRAPI OUT are used to distinguish between input and output parameters.

The Multicore Association November 15, 2010 Page 28 of 160

MRAPI| APl Specification V1.0

3.2 General

This section describes initialization and introspection functions. All applications wishing to use MRAPI
functionality must use the initialization and finalization routines. Following initialization, the introspection
functions can provide important information to MRAPI-based applications.

The Multicore Association November 15, 2010 Page 29 of 160

MRAPI| APl Specification V1.0

3.21 MRAPI_INITIALIZE

NAME

mrapi initialize

SYNOPSIS
#include <mrapi.h>

void mrapi initialize(
MRAPI IN mrapi domain t domain_ id,
MRAPI IN mrapi node t node_ id,
MRAPI IN mrapi parameters t* mrapi parameters,
MRAPI OUT mrapi info t* mrapi info,
MRAPI OUT mrapi_ status t* status
)

DESCRIPTION

mrapi initialize () initializes the MRAPI environment on a given MRAPI node in a given
MRAPI domain. It has to be called by each node using MRAPI. mrapi parameters is used to
pass implementation specific initialization parameters. mrapi info is used to obtain information
from the MRAPI implementation, including MRAPI and the underlying implementation version
numbers, implementation vendor identification, the number of nodes in the topology, the number of
ports on the local node and vendor specific implementation information, see the header files for
additional information. A node is a process, a thread, or a processor (or core) with an independent
program counter running a piece of code. In other words, an MRAPI node is an independent thread
of control. An MRAPI node can call mrapi initialize () once per node, and it is an error to call
mrapi initialize () multiple times from a given node, unless mrapi finalize () is calledin
between. A given MRAPI implementation will specify what is a node (i.e., what thread of control—
process, thread, or other—is a node) in that implementation. A thread and process are just two
examples of threads of control, and there could be others.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ENO INIT The MRAPI environment could not be initialized.
MRAPI ERR NODE_INITIALIZED | The MRAPI environment has already been initialized.
MRAPI ERR NODE INVALID The node id parameter is not valid.
MRAPI ERR DOMAIN INVALID The domain id parameter is not valid.
MRAPI ERR PARAMETER Invalid mrapi parameters or mrapi info parameter.
NOTE
SEE ALSO

mrapi finalize ()

The Multicore Association November 15, 2010 Page 30 of 160

MRAPI| APl Specification V1.0

3.22 MRAPI_NODE_INIT_ATTRIBUTES

NAME
mrapi node init attributes

SYNOPSIS
#include <mrapi.h>

void mrapi node init attributes(
MRAPI OUT mrapi node attributes t* attributes,
MRAPI OUT mrapi status t* status

);

DESCRIPTION
Unless you want the defaults, this call must be used to initialize the values of an
mrapi node attributes t structure prior to mrapi node set attribute (). Use
mrapi node set attribute () to change any default values prior to calling
mrapi initialize().

RETURN VALUE
On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
| MRAPI ERR_ PARAMETER | Invalid attributes parameter.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 31 of 160

MRAPI| APl Specification V1.0

3.23 MRAPI_NODE_SET_ATTRIBUTE

NAME
mrapi node set attribute

SYNOPSIS
#include <mrapi.h>

void mrapi node set attribute(
MRAPI OUT mrapi node attributes t* attributes,
MRAPI IN mrapi uint t attribute num,
MRAPI IN void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi_ status t* status
)

DESCRIPTION

This function is used to change default values of an mrapi node attributes_t data structure
prior to calling mrapi initialize (). Callsto this function have no effect on node attributes
once the node has been created and initialized.

At this time there are no MRAPI-defined node attributes.
RETURN VALUE

On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI_ERR_ATTR _READONLY [Attribute cannot be modified.
MRAPI_ERR_PARAMETER Invalid attribute parameter.
MRAPI_ERR_ATTR NUM Unknown attribute number
MRAPI ERR ATTR SIZE Incorrect attribute size

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 32 of 160

MRAPI| APl Specification V1.0

3.24 MRAPI_NODE_GET_ATTRIBUTE

NAME
mrapi node get attribute

SYNOPSIS
#include <mrapi.h>

void mrapi node get attribute (
MRAPI IN mrapi node t node,
MRAPI IN mrapi uint t attribute num,
MRAPI OUT void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi_ status t* status

)

DESCRIPTION
Returns the attribute that corresponds to the given attribute num for this node. The attribute
may be viewed but may not be changed.

RETURN VALUE
On success *status is setto MRAPI SUCCESS and the attribute value is filled in. On error,
*status is set to the appropriate error defined below and the attribute value is undefined. The
attribute identified by the attribute numis returned in the void* attribute parameter.

ERRORS
MRAPI_ERR_PARAMETER Invalid attribute parameter.
MRAPI_ERR_ATTR NUM Unknown attribute number
MRAPI ERR ATTR SIZE Incorrect attribute size
MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO
mrapi node set attribute () for a list of pre-defined attribute numbers.

The Multicore Association November 15, 2010 Page 33 of 160

MRAPI| APl Specification V1.0

3.25 MRAPI_FINALIZE

NAME

mrapi finalize

SYNOPSIS
#include <mrapi.h>

void mrapi finalize(
MRAPI OUT mrapi status t* status
)7

DESCRIPTION
mrapi finalize () finalizes the MRAPI environment on a given MRAPI node and domain. It has
to be called by each node using MRAPI. Itis an error to call mrapi finalize () without first
callingmrapi initialize ().An MRAPI node can callmrapi finalize () once for each call
tomrapi initialize (), butitis an errorto callmrapi finalize () multiple times from a
given <domain,node> unless mrapi initialize () has been called prior to each
mrapi finalize () call

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR NODE_FINALFAILED | The MRAPI environment could not be finalized.
MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 34 of 160

MRAPI| APl Specification V1.0

326 MRAPI_DOMAIN_ID_GET

NAME
mrapi domain id get

SYNOPSIS
#include <mrapi.h>

mrapi domain t mrapi domain id get (
MRAPI OUT mrapi status t* status
);

DESCRIPTION
Returns the domain id associated with the local node.

RETURN VALUE

On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
| MRAPI_ERR_NODE_NOTINIT | The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 35 of 160

MRAPI| APl Specification V1.0

3.27 MRAPI_NODE_ID_GET

NAME
mrapi node id get

SYNOPSIS
#include <mrapi.h>

mrapi node t mrapi node id get(
MRAPI OUT mrapi status t* status
);

DESCRIPTION
Returns the node id associated with the local node and domain.

RETURN VALUE

On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
| MRAPI_ERR_NODE_NOTINIT | The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 36 of 160

MRAPI| APl Specification V1.0

3.3 Synchronization Primitives

MRAPI supports three types of synchronization primitives: mutexes, semaphores and reader/writer
locks. They provide locking functionality through the use of a flag (mutex) or a counter (semaphores) or
combination of flag and counter (reader/writer locks). Although a binary semaphore can be used as a
muteXx, MRAPI explicitly provides mutexes to allow for hardware acceleration. Although Reader/Writer
locks can be implemented on top of mutexes and semaphores, MRAPI provides them as a
convenience.

Within MRAPI, there is no concept of ownership for the synchronization primitives. Any node may create
or get a mutex, semaphore or reader/writer lock (provided it knows the shared key) and any node may
delete the mutex, semaphore or reader/writer lock. To support performance and debuggability tradeoffs,
MRAPI provides two types of error checking; basic (default) and extended (enabled via the

MRAPI ERROR EXT attribute). When extended error checking is enabled, if lock is called on a mutex,
semaphore or reader/writer lock that no longer exists, an MRAPI ERR [MUTEX|SEM|RWL] DELETED
error code will be returned. When extended error checking is disabled, the MRAPI ERR [MUTEX |

SEM | RWL] INVALID error will be returned and the lock will fail. The benefit of extended error
checking is for early functional verification/validation of the code and the working group feels this is a
valuable feature for easing the burden of multicore development and debugging. Because extended
error checking can be resource intensive, it is optional and disabled by default.

By default, the synchronization primitives are shared across domains. Set the MRAPTI DOMAIN SHARED
attribute to false when you create the mutex, semaphore or reader/writer lock to disable resource
sharing across domains. We cannot always expect sharing across domains to be efficient.

The Multicore Association November 15, 2010 Page 37 of 160

MRAPI| APl Specification V1.0

3.3.1 Mutexes

MRAPI mutexes provide exclusive locking functionality through the use of a flag (just like a binary
semaphore). MRAPI mutexes support recursive locking. Recursive locking means that once a mutex is
locked, lock may be called again before unlock is called. For each call to lock, a unique lock key is
returned. This lock key must be passed in to the call to unlock. The implementation uses the keys to
match the order of the lock/unlock calls. Recursive locking is disabled by default and can be enabled by
setting the MRAPI MUTEX RECURSIVE attribute when the mutex is created. When the mutex is not
recursive, the lock keys are ignored.

Ifmrapi mutex lock () is called and the lock is currently locked and recursive locking is disabled,
then the function will block until the lock is available. It is safer to use mrapi mutex trylock()
unless you are certain that the lock will eventually succeed. Otherwise, a thread of execution can block
forever waiting for the lock.

The Multicore Association November 15, 2010 Page 38 of 160

MRAPI| APl Specification V1.0

3.3.1.1 MRAPI_MUTEX_CREATE

NAME

mrapi mutex create

SYNOPSIS
#include <mrapi.h>

mrapi mutex hndl t mrapi mutex create(
MRAPI IN mrapi mutex id t mutex id,
MRAPI IN mrapi mutex attributes t* attributes,
MRAPI OUT mrapi status t* status

)i

DESCRIPTION
This function creates a mutex. For non-default behavior, attributes must be set before the call to
mrapi mutex create (). Once a mutex has been created, its attributes may not be changed. If
the attributes are NULL, then default attributes will be used. The recursive attribute is disabled by
default. If you want to enable recursive locking/unlocking then you need to set that attribute before
the call to create. If mutex idis setto MRAPI MUTEX ID ANY, then MRAPI will choose an
internal id for you.

RETURN VALUE
On success a mutex handle is returned and *status is setto MRAPI SUCCESS. On error,
*status is set to the appropriate error defined below. In the case where the mutex already exists,
status will be set to MRAPI EXISTS and the handle returned will not be a valid handle.

ERRORS
MRAPI ERR_MUTEX ID_INVALID | The mutex id is not a valid mutex id.
MRAPI ERR MUTEX EXISTS This mutex is already created.
MRAPI ERR MUTEX LIMIT Exceeded maximum number of mutexes allowed.
MRAPI ERR NODE NOTINIT The calling node is not initialized.
MRAPI_ERR_PARAMETER Invalid attributes parameter.

NOTE

SEE ALSO

Seemrapi_mutex_init_attributes()andHmapi_mutex_set_attribute()
See data types identifiers discussion in Section 2.11.13.

The Multicore Association November 15, 2010 Page 39 of 160

MRAPI| APl Specification V1.0

3.3.1.2 MRAPI_MUTEX_INIT_ATTRIBUTES

NAME

mrapi mutex init attributes

SYNOPSIS
#include <mrapi.h>

void mrapi mutex init attributes(
MRAPI OUT mrapi mutex attributes t* attributes,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

This function initializes the values of an mrapi mutex attributes t structure. For non-default
behavior this function should be called prior to calling mrapi mutex set attribute (). You
would then use mrapi mutex set attribute () to change any default values prior to calling

mrapi mutex create().

RETURN VALUE

On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR PARAMETER

Invalid attributes parameter.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010

Page 40 of 160

MRAPI| APl Specification V1.0

3.3.1.3 MRAPI_MUTEX_SET_ATTRIBUTE

NAME
mrapi mutex set attribute

SYNOPSIS
#include <mrapi.h>

void mrapi mutex set attribute (
MRAPI OUT mrapi mutex attributes t* attributes,
MRAPI IN mrapi uint t attribute num,
MRAPI IN void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status
) i

DESCRIPTION
This function is used to change default values of an mrapi mutex attributes_ t data structure
prior to calling mrapi mutex create () . Calls to this function have no effect on mutex attributes
once the mutex has been created.

MRAPI-defined mutex attributes:

Attribute num Description Data Type Default

MRAPI MUTEX RECURSIVE | Indicates whether mrapi_ boolean t
or not this is a
recursive mutex.

MRAPI FALSE

MRAPI_ERROR_EXT Indicates whether | mrapi boolean t
or not this mutex
has extended error

checking enabled.

MRAPI FALSE

MRAPI DOMAIN SHARED Indicates whether mrapi boolean t
or not the mutex is
shareable across

domains.

MRAPI TRUE

RETURN VALUE

On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS

MRAPI ERR ATTR READONLY

Attribute cannot be modified.

MRAPI ERR PARAMETER

Invalid attribute parameter.

MRAPI ERR ATTR NUM

Unknown attribute number

MRAPI ERR ATTR SIZE

Incorrect attribute size

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 41 of 160

MRAPI| APl Specification V1.0

3.3.14 MRAPI_MUTEX_GET_ATTRIBUTE

NAME
mrapi mutex get attribute

SYNOPSIS
#include <mrapi.h>

void mrapi mutex get attribute (
MRAPI IN mrapi mutex hndl t mutex,
MRAPI IN mrapi uint t attribute num,
MRAPI OUT void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status

)7

DESCRIPTION
Returns the attribute that corresponds to the given attribute num for this mutex. The attributes
may be viewed but may not be changed (for this mutex).

RETURN VALUE
On success *status is setto MRAPI SUCCESS and the attribute value is filled in. On error,
*status is set to the appropriate error defined below and the attribute value is undefined. The
attribute identified by the attribute numis returned in the void* attribute parameter. When
extended error checking is enabled, if this function is called on a mutex that no longer exists, an
MRAPI ERR MUTEX DELETED error code will be returned. When extended error checking is
disabled, the MRAPI ERR_MUTEX INVALID error will be returned.

ERRORS
MRAPI ERR_ PARAMETER Invalid attribute parameter.
MRAPI ERR MUTEX INVALID | Argument is not a valid mutex handle.
MRAPI ERR_ATTR NUM Unknown attribute number
MRAPI ERR_ATTR SIZE Incorrect attribute size

MRAPI_ERR_MUTEX DELETED | If the mutex has been deleted then if MRAPTI ERROR EXT
attribute is set, MRAPI will return

MRAPI ERR MUTEX DELETED otherwise MRAPI will just
return MRAPI ERR MUTEX INVALID.
MRAPI ERR NODE NOTINIT | The calling node is not intialized.

NOTE

SEE ALSO
mrapi mutex set attribute () for a list of pre-defined attribute numbers.

The Multicore Association November 15, 2010 Page 42 of 160

MRAPI| APl Specification V1.0

3.3.1.5 MRAPI_MUTEX_GET

NAME
mrapi mutex get

SYNOPSIS
#include <mrapi.h>

mrapi mutex hndl t mrapi mutex get(

MRAPI IN mrapi mutex id t mutex id,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

Given amutex 1id, this function returns the MRAPI handle for referencing that mutex.

RETURN VALUE

On success the mutex handle is returned and *status is setto MRAPI SUCCESS. On error,
*status is set to the appropriate error defined below. When extended error checking is enabled, if
this function is called on a mutex that no longer exists, an MRAPI ERR MUTEX DELETED error code
will be returned. When extended error checking is disabled, the MRAPI ERR MUTEX INVALID

error will be returned.

ERRORS

MRAPI ERR _MUTEX ID INVALID

The mutex id parameter does not refer to a valid mutex or
it is set to MRAPI_MUTEX_ID_ANY.

MRAPI ERR NODE NOTINIT

The node/domain is not initialized.

MRAPI ERR DOMAIN NOTSHARED

This resource cannot be shared by this domain.

MRAPI ERR MUTEX DELETED

If the mutex has been deleted then if MRAPI ERROR EXT
attribute is set, MRAPI will return

MRAPI ERR MUTEX DELETED otherwise MRAPI will just
return MRAPI ERR MUTEX ID INVALID.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO
mrapi mutex set attribute()

The Multicore Association

November 15, 2010 Page 43 of 160

MRAPI| APl Specification V1.0

3.3.1.6 MRAPI_MUTEX_DELETE

NAME
mrapi mutex delete

SYNOPSIS
#include <mrapi.h>

void mrapi mutex delete (
MRAPI IN mrapi mutex hndl t mutex,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
This function deletes the mutex. The mutex may only be deleted if it is unlocked. If the mutex
attributes indicate extended error checking is enabled then all subsequent lock requests will be
notified that the mutex was deleted. When extended error checking is enabled, if this function is
called on a mutex that no longer exists, an MRAPI ERR MUTEX DELETED error code will be
returned. When extended error checking is disabled, the MRAPI ERR MUTEX INVALID error will
be returned.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS

MRAPI ERR MUTEX INVALID | Argument is not a valid mutex handle.

MRAPI ERR MUTEX LOCKED | The mutex is locked and cannot be deleted.
MRAPI_ERR_MUTEX DELETED | If the mutex has been deleted then if MRAPI ERROR EXT
attribute is set, MRAPI will return

MRAPI ERR MUTEX DELETED otherwise MRAPI will just
return MRAPI ERR MUTEX INVALID.
MRAPI_ERR NODE NOTINIT | The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 44 of 160

MRAPI| APl Specification V1.0

3.3.1.7 MRAPI_MUTEX_LOCK

NAME

mrapi mutex lock

SYNOPSIS
#include <mrapi.h>

void mrapi mutex lock (
MRAPI IN mrapi mutex hndl t mutex,
MRAPI OUT mrapi key t* lock key,
MRAPI IN mrapi timeout t timeout,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
This function attempts to lock a mutex and will block if another node has a lock on the mutex. When
it obtains the lock, it sets up a unique key for that lock and that key is to be passed back on the call
to unlock. This key allows us to support recursive locking. The 1ock key is only valid if status
indicates success. Whether or not a mutex can be locked recursively is controlled via the
MRAPI MUTEX RECURSIVE attribute, and the default is MRAPT FALSE.

RETURN VALUE
On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. When extended error checking is enabled, if this function is called on a mutex that
no longer exists, an MRAPI ERR MUTEX DELETED error code will be returned. When extended
error checking is disabled, the MRAPI ERR MUTEX INVALID error will be returned.

ERRORS

MRAPI ERR MUTEX INVALID | Argumentis not a valid mutex handle.

MRAPI ERR MUTEX LOCKED Mutex is already locked by another node or mutex is already
locked by this node and is not a recursive mutex.
MRAPI_ERR_MUTEX DELETED | If the mutex has been deleted then if MRAPTI ERROR EXT
attribute is set, MRAPI will return

MRAPI ERR MUTEX DELETED otherwise MRAPI will just
return MRAPI ERR MUTEX INVALID.

MRAPI TIMEOUT Timeout was reached.
MRAPI ERR PARAMETER Invalid lock key or timeout parameter.
MRAPI_ERR NODE NOTINIT | The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 45 of 160

MRAPI| APl Specification V1.0

3.3.1.8 MRAPI_MUTEX_TRYLOCK

NAME
mrapi mutex trylock

SYNOPSIS
#include <mrapi.h>

mrapi boolean t mrapi mutex trylock(
MRAPI IN mrapi mutex hndl t mutex,
MRAPI OUT mrapi key t* lock key,
MRAPI OUT mrapi status t* status
)

DESCRIPTION
This function attempts to obtain a lock on the mutex. If the lock can’t be obtained because it is
already locked by another node then the function will immediately return MRAPI FALSE and
status will be set to MRAPI SUCCESS. If the request can’t be satisfied for any other
reason, then this function will immediately return MRAPI_FALSE and status will be set to the
appropriate error code below. If it is successful in obtaining the lock, it sets up a unique key for that
lock and that key is to be passed back on the call to unlock. The 1ock key is only valid if status
indicates success and the function returns MRAPI TRUE. This key allows us to support recursive
locking. Whether or not a mutex can be locked recursively is controlled via the
MRAPI MUTEX RECURSIVE attribute, and the default is MRAPT FALSE.

RETURN VALUE

Returns MRAPI TRUE if the lock was acquired, returns MRAPI FALSE otherwise. If there was an
error then *status will be set to indicate the error from the table below, otherwise *status will
indicate MRAPI SUCCESS. If the lock could not be obtained then *status will be either

MRAPI ELOCKED or one of the error conditions in the table below. When extended error checking is
enabled, if lock is called on a mutex that no longer exists, an MRAPI ERR MUTEX DELETED error
code will be returned. When extended error checking is disabled, the

MRAPI ERR MUTEX INVALID error will be returned and the lock will fail.

ERRORS

MRAPI ERR MUTEX INVALID | Argument is not a valid mutex handle.

MRAPI_ERR_MUTEX DELETED | If the mutex has been deleted then if MRAPTI ERROR EXT
attribute is set, MRAPI will return

MRAPI ERR MUTEX DELETED otherwise MRAPI will just
return MRAPI ERR MUTEX INVALID.
MRAPI_ERR MUTEX LOCKED | Mutex is already locked by another node or mutex is already
locked by this node and is not a recursive mutex.
MRAPI_ERR PARAMETER Invalid lock key parameter.

MRAPI_ERR NODE NOTINIT | The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 46 of 160

MRAPI| APl Specification V1.0

3.3.1.9 MRAPI_MUTEX_UNLOCK

NAME

mrapi mutex unlock

SYNOPSIS
#include <mrapi.h>

void mrapi mutex unlock(
MRAPI IN mrapi mutex hndl t mutex,
MRAPI IN mrapi key t* lock key,
MRAPI OUT mrapi status t* status
)

DESCRIPTION
This function unlocks a mutex. If the mutex is recursive, then the lock key parameter passed in
must match the Lock key that was returned by the corresponding call to lock the mutex, and the
set of recursive locks must be released using lock keys in the reverse order that they were
obtained. When extended error checking is enabled, if this function is called on a mutex that no
longer exists, an MRAPI ERR MUTEX DELETED error code will be returned. When extended error
checking is disabled, the MRAPI ERR MUTEX INVALID error will be returned.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR MUTEX INVALID Argument is not a valid mutex handle.
MRAPI ERR MUTEX NOTLOCKED | Mutex is not locked.
MRAPI ERR MUTEX KEY lock key is invalid for this mutex.

MRAPI_ERR_MUTEX LOCKORDER [The unlock call does not match the lock order for this
recursive mutex.

MRAPI_ERR_PARAMETER Invalid lock key parameter.

MRAPI ERR MUTEX DELETED If the mutex has been deleted then if MRAPI ERROR EXT
attribute is set, MRAPI will return

MRAPI ERR MUTEX DELETED otherwise MRAPI will just
return MRAPI ERR MUTEX INVALID.

MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 47 of 160

MRAPI| APl Specification V1.0

3.3.2 Semaphores

MRAPI semaphores provide shared locking functionality through the use of a counter. When an MRAPI
semaphore is created, the maximum number of available locks is specified (in the

shared lock limit parameter). If mrapi sem lock() is called and all locks are currently locked,
then the function will block until a lock is available. It is safer to use mrapi sem trylock() unless
you are certain that the lock will eventually succeed. Otherwise, your thread of execution can block
forever waiting for the lock.

The Multicore Association November 15, 2010 Page 48 of 160

MRAPI| APl Specification V1.0

3.3.21 MRAPI_SEM_CREATE

NAME

mrapi sem create

SYNOPSIS
#include <mrapi.h>

mrapi sem hndl t mrapi sem create(
MRAPI IN mrapi sem id t sem id,
MRAPI IN mrapi sem attributes t* attributes,
MRAPI IN mrapi uint t shared lock limit,
MRAPI OUT mrapi status t* status

)i

DESCRIPTION
This function creates a semaphore. Unless you want the defaults, attributes must be set before the
calltomrapi sem create (). Once a semaphore has been created, its attributes may not be
changed. If the attributes are NULL, then implementation-defined default attributes will be used. If
sem idis setto MRAPI SEM ID ANY, then MRAPI will choose an internal id for you. The
shared lock limit parameter indicates the maximum number of available locks and it must be
between 0 and MRAPI MAX SEM SHAREDLOCKS.

RETURN VALUE

On success a semaphore handle is returned and *status is setto MRAPI SUCCESS. On error,
*status is set to the appropriate error defined below. In the case where the semaphore already
exists, status will be set to MRAPI EXISTS and the handle returned will not be a valid handle.

ERRORS
MRAPI_ERR_SEM_ID_INVALID | The semaphore id is not a valid semaphore id.
MRAPI ERR SEM EXISTS This semaphore is already created.
MRAPI ERR SEM LIMIT Exceeded maximum number of semaphores allowed.
MRAPI ERR_SEM LOCKLIMIT | The shared lock limitis out of bounds.
MRAPI ERR NODE NOTINIT The calling node is not initialized.
MRAPI_ERR PARAMETER Invalid attributes parameter.

NOTE

SEE ALSO

mrapi sem init attributes() andmrapi sem set attribute ().
See also data types identifiers discussion in Section 2.11.13

The Multicore Association November 15, 2010 Page 49 of 160

MRAPI| APl Specification V1.0

3.3.2.2 MRAPI_SEM_INIT_ATTRIBUTES

NAME

mrapi sem init attributes

SYNOPSIS
#include <mrapi.h>

void mrapi sem init attributes(
MRAPI OUT mrapi sem attributes t* attributes,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

Unless you want the defaults, this function should be called to initialize the values of an
mrapl sem attributes_t structure prior to mrapi sem set attribute (). You would then
usemrapi sem set attribute () to change any default values prior to calling

mrapi sem create().

RETURN VALUE

On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR PARAMETER

Invalid attributes parameter.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010

Page 50 of 160

MRAPI| APl Specification V1.0

3.3.2.3 MRAPI_SEM_SET_ATTRIBUTE

NAME
mrapi sem set attribute

SYNOPSIS
#include <mrapi.h>

void mrapi sem set attribute(
MRAPI OUT mrapi sem attributes t* attributes,
MRAPI IN mrapi uint t attribute num,
MRAPI IN void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status

)7

DESCRIPTION

This function is used to change default values of an mrapi sem attributes_t data structure
prior to calling mrapi sem create (). Calls to this function have no effect on semaphore
attributes once the semaphore has been created.

MRAPI-defined semaphore attributes:

Attribute num Description Data Type Default

MRAPI ERROR_EXT Indicates whether or | mrapi boolean t MRAPI FALSE
not this semaphore
has extended error
checking enabled.

MRAPI DOMAIN SHARED | Indicates whether or | mrapi boolean t MRAPI TRUE
not this semaphore
is shareable across
domains.

RETURN VALUE

On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR ATTR READONLY

Attribute cannot be modified.

MRAPI ERR PARAMETER

Invalid attribute parameter.

MRAPI_ERR_ATTR NUM

Unknown attribute number

MRAPI ERR ATTR SIZE

Incorrect attribute size

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010 Page 51 of 160

MRAPI| APl Specification V1.0

3.3.24 MRAPI_SEM_GET_ATTRIBUTE

NAME
mrapi sem get attribute

SYNOPSIS
#include <mrapi.h>

void mrapi sem get attribute (
MRAPI IN mrapi sem hndl t sem,
MRAPI IN mrapi uint t attribute num,
MRAPI OUT void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status

)7

DESCRIPTION

Returns the attribute that corresponds to the given attribute num for this semaphore. The
attribute may be viewed but may not be changed (for this semaphore).

RETURN VALUE

On success *status is setto MRAPI SUCCESS and the attribute value is filled in. On error,
*status is set to the appropriate error defined below and the attribute value is undefined. The
attribute identified by the attribute numis returned in the void* attribute parameter. When
extended error checking is enabled, if this function is called on a semaphore that no longer exists,
an MRAPI ERR MUTEX DELETED error code will be returned. When extended error checking is
disabled, the MRAPI ERR_SEM INVALID error will be returned.

ERRORS

MRAPI ERR PARAMETER

Invalid attribute parameter.

MRAPI_ERR_SEM INVALID

Argument is not a valid semaphore handle.

MRAPI_ERR_ATTR NUM

Unknown attribute number

MRAPI ERR ATTR SIZE

Incorrect attribute size

MRAPI_ERR_SEM DELETED

If the semaphore has been deleted then if MRAPT ERROR EXT
attribute is set, MRAPI will return MRAPI ERR SEM DELETED
otherwise MRAPI will just return MRAPI ERR SEM INVALID.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

mrapi_ sem set attribute () for a list of pre-defined attribute numbers.

The Multicore Association

November 15, 2010 Page 52 of 160

MRAPI| APl Specification V1.0

3.3.25 MRAPI_SEM_GET

NAME

mrapi sem get

SYNOPSIS
#include <mrapi.h>

mrapi sem hndl t mrapi sem get(
MRAPI IN mrapi sem id t sem id,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
Given a sem_1id, this function returns the MRAPI handle for referencing that semaphore.

RETURN VALUE
On success the semaphore handle is returned and *status is setto MRAPI SUCCESS. On error,
*status is set to the appropriate error defined below. When extended error checking is enabled, if
this function is called on a semaphore that no longer exists, an MRAPI ERR SEM DELETED error
code will be returned. When extended error checking is disabled, the MRAPTI ERR SEM INVALID
error will be returned.

ERRORS
MRAPI_ERR_SEM ID INVALID The sem_id parameter does not refer to a valid semaphore
or was called with sem id setto MRAPI SEM ID ANY.
MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.
MRAPI_ERR_DOMAIN_ NOTSHARED | This resource cannot be shared by this domain.
MRAPI ERR SEM DELETED If the semaphore has been deleted then if
MRAPI ERROR EXT attribute is set, MRAPI will return
MRAPI ERR_SEM DELETED otherwise MRAPI will just
return MRAPI ERR SEM ID INVALID.
NOTE
SEE ALSO

Seemrapi sem set attribute()

The Multicore Association November 15, 2010 Page 53 of 160

MRAPI| APl Specification V1.0

3.3.2.6 MRAPI_SEM_DELETE

NAME
mrapi sem delete

SYNOPSIS
#include <mrapi.h>

void mrapi sem delete (
MRAPI IN mrapi sem hndl t sem,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
This function deletes the semaphore. The semaphore will only be deleted if the semaphore is not
locked. If the semaphore attributes indicate extended error checking is enabled then all subsequent
lock requests will be notified that the semaphore was deleted.

RETURN VALUE
On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. When extended error checking is enabled, if this function is called on a semaphore
that no longer exists, an MRAPI ERR SEM DELETED error code will be returned. When extended
error checking is disabled, the MRAPTI ERR_SEM INVALID error will be returned.

ERRORS
MRAPI ERR_SEM INVALID Argument is not a valid semaphore handle.
MRAPI_ERR_SEM DELETED If the semaphore has been deleted then if MRAPI ERROR EXT

attribute is set, MRAPI will return MRAPI ERR SEM DELETED
otherwise MRAPI will just return MRAPI ERR SEM INVALID.

MRAPI_ERR_SEM LOCKED The semaphore is locked and cannot be deleted.

MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 54 of 160

MRAPI| APl Specification V1.0

3.3.2.7 MRAPI_SEM_LOCK

NAME

mrapi sem lock

SYNOPSIS
#include <mrapi.h>

void mrapi sem lock(

MRAPI IN mrapi sem hndl t sem,
MRAPI IN mrapi timeout t timeout,
MRAPI OUT mrapi status t* status

)7

DESCRIPTION

This function attempts to obtain a single lock on the semaphore and will block until a lock is
available or the timeout is reached (if timeout is non-zero). If the request can’t be satisfied for
some other reason, this function will return the appropriate error code below. An application may
make this call as many times as needed to obtain multiple locks, up to the limit specified by the
shared lock limit parameter used when the semaphore was created.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. When extended error checking is enabled, if lock is called on semaphore that no
longer exists, an MRAPI ERR SEM DELETED error code will be returned. When extended error
checking is disabled, the MRAPI ERR SEM INVALID error will be returned and the lock will fail.

ERRORS

MRAPI_ERR_SEM INVALID

Argument is not a valid semaphore handle.

MRAPI ERR_SEM DELETED

If the semaphore has been deleted then if MRAPT ERROR EXT
attribute is set, MRAPI will return MRAPI ERR SEM DELETED
otherwise MRAPI will just return MRAPI ERR SEM INVALID.

MRAPI TIMEOUT

Timeout was reached.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010 Page 55 of 160

MRAPI| APl Specification V1.0

3.3.2.8 MRAPI_SEM_TRYLOCK

NAME
mrapi sem trylock

SYNOPSIS
#include <mrapi.h>

mrapi boolean t mrapi sem trylock(
MRAPI IN mrapi sem hndl t sem,
MRAPI OUT mrapi status t* status

);

DESCRIPTION
This function attempts to obtain a single lock on the semaphore. If the lock can’t be obtained
because all the available locks are already locked (by this node and/or others) then the function will
immediately return MRAPI FALSE and status will be setto MRAPI SUCCESS. If the request can’t
be satisfied for any other reason, then this function will immediately return MRAPTI FALSE and
status will be set to the appropriate error code below.

RETURN VALUE
Returns MRAPI TRUE if the lock was acquired, returns MRAPI FALSE otherwise. If there was an
error then *status will be set to indicate the error from the table below, otherwise *status will
indicate MRAPI SUCCESS. If the lock could not be obtained then *status will be either
MRAPI ELOCKED or one of the error conditions in the table below. When extended error checking is
enabled, if this function is called on a semaphore that no longer exists, an
MRAPI ERR SEM DELETED error code will be returned. When extended error checking is disabled,
the MRAPI ERR SEM INVALID error will be returned.

ERRORS
MRAPI ERR_SEM INVALID Argument is not a valid semaphore handle.
MRAPI_ERR_SEM DELETED If the semaphore has been deleted then if MRAPI ERROR EXT

attribute is set, MRAPI will return MRAPI ERR SEM DELETED
otherwise MRAPI will just return MRAPI ERR SEM INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 56 of 160

MRAPI| APl Specification V1.0

3.3.2.9 MRAPI_SEM_UNLOCK

NAME

mrapi sem unlock

SYNOPSIS
#include <mrapi.h>

void mrapi sem unlock (
MRAPI IN mrapi sem hndl t sem,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
This function releases a single lock.

RETURN VALUE
On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. When extended error checking is enabled, if this function is called on a semaphore
that no longer exists, an MRAPI ERR_SEM DELETED error code will be returned. When extended
error checking is disabled, the MRAPI ERR SEM INVALID error will be returned.

ERRORS
MRAPI_ERR_SEM INVALID Argument is not a valid semaphore handle.
MRAPI_ERR_SEM NOTLOCKED This node does not have a lock on this semaphore
MRAPI_ERR_SEM DELETED If the semaphore has been deleted then if MRAPT ERROR EXT
attribute is set, MRAPI will return MRAPI ERR SEM DELETED
otherwise MRAPI will just return MRAPT ERR SEM INVALID.
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.
NOTE
SEE ALSO

The Multicore Association November 15, 2010 Page 57 of 160

MRAPI| APl Specification V1.0

3.3.3 Reader/Writer Locks

MRAPI reader and writer locks provide a combination of exclusive (writer) and shared (reader) locking
functionality. A single reader/writer lock provides both types of locking. The type of lock desired is
passed in the mode parameter to the lock function.

The Multicore Association November 15, 2010 Page 58 of 160

MRAPI| APl Specification V1.0

3.3.3.1 MRAPI_RWL_CREATE

NAME

mrapi rwl create

SYNOPSIS
#include <mrapi.h>

mrapi rwl hndl t mrapi rwl create(
MRAPI IN mrapi rwl id t rwl id,
MRAPI IN mrapi rwl attributes t* attributes,
MRAPI IN mrapi uint t reader lock limit,
MRAPI OUT mrapi status t* status

)i

DESCRIPTION
This function creates a reader/writer lock. Unless you want the defaults, attributes must be set
before the callto mrapi rwl create (). Once a reader/writer lock has been created, its
attributes may not be changed. If the attributes are NULL, then implementation-defined default
attributes will be used. If rwl idis setto MRAPI RWL ID ANY, then MRAPI will choose an internal
id for you.

RETURN VALUE
On success a reader/writer lock handle is returned and *status is setto MRAPI SUCCESS. On
error, *status is set to the appropriate error defined below. In the case where the reader/writer
lock already exists, status will be set to MRAPI EXISTS and the handle returned will not be a

valid handle.
ERRORS
MRAPI_ERR_RWL_ID INVALID | The rwl idis not a valid reader/writer lock id.
MRAPI ERR RWL EXISTS This reader/writer lock is already created.
MRAPI ERR RWL LIMIT Exceeded maximum number of reader/writer locks allowed.
MRAPI ERR NODE NOTINIT The calling node is not initialized.
MRAPI_ERR PARAMETER Invalid attributes parameter.
NOTE
SEE ALSO

mrapi rwl init attributes() andmrapi rwl set attribute().
See data types identifiers discussion: Section 2.11.13

The Multicore Association November 15, 2010 Page 59 of 160

MRAPI| APl Specification V1.0

3.3.3.2 MRAPI_RWL_INIT_ATTRIBUTES

NAME

mrapi rwl init attributes

SYNOPSIS
#include <mrapi.h>

void mrapi rwl init attributes(
MRAPI OUT mrapi rwl attributes t* attributes,
MRAPI OUT mrapi status t* status

)i

DESCRIPTION
Unless you want the defaults, this call must be used to initialize the values of an
mrapi rwl attributes_ t structure prior to mrapi rwl set attribute (). Use
mrapi rwl set attribute () to change any default values prior to calling
mrapi rwl create().

RETURN VALUE
On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR_ PARAMETER Invalid attributes parameter.
MRAPI ERR _NODE_NOTINIT | The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 60 of 160

MRAPI| APl Specification V1.0

3.3.3.3 MRAPI_RWL_SET_ATTRIBUTE

NAME

mrapi rwl set attribute

SYNOPSIS
#include <mrapi.h>

void mrapi rwl set attribute(
MRAPI OUT mrapi rwl attributes t* attributes,

MRAPI IN mrapi uint t attribute num,

MRAPI IN void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status

)7

DESCRIPTION

This function is used to change default values of an mrapi rwl attributes_t data structure

prior to calling mrapi rwl create().

once the mutex has been created.

MRAPI-defined reader/writer lock attributes:

Calls to this function have no effect on mutex attributes

Attribute num

Description

Data Type

Default

MRAPI_ERROR EXT

Indicates whether or
not this reader/writer
lock has extended
error checking
enabled.

mrapi boolean t

MRAPI FALSE

MRAPI DOMAIN SHARED

Indicates whether or
not the reader/writer
lock is shareable
across domains.

mrapi boolean t

MRAPI TRUE

RETURN VALUE

On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR ATTR READONLY

Attribute cannot be modified.

MRAPI ERR PARAMETER

Invalid attribute parameter.

MRAPI_ERR_ATTR NUM

Unknown attribute number

MRAPI_ERR ATTR SIZE

Incorrect attribute size

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010

Page 61 of 160

MRAPI| APl Specification V1.0

3.3.34 MRAPI_RWL_GET_ATTRIBUTE

NAME
mrapi rwl get attribute

SYNOPSIS
#include <mrapi.h>

void mrapi rwl get attribute (
MRAPI IN mrapi rwl hndl t rwl,
MRAPI IN mrapi uint t attribute num,
MRAPI OUT void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status

) i

DESCRIPTION
Returns the attribute that corresponds to the given attribute num for this reader/writer lock. The
attribute may be viewed but may not be changed (for this reader/writer lock).

RETURN VALUE
On success *status is setto MRAPI SUCCESS and the attribute value is filled in. On error,
*status is set to the appropriate error defined below and the attribute value is undefined. The
attribute identified by the attribute numis returned in the void* attribute parameter. When
extended error checking is enabled, if this function is called on a reader/writer lock that no longer
exists, an MRAPI ERR RWL DELETED error code will be returned. When extended error checking is
disabled, the MRAPI ERR RWL INVALID error will be returned.

ERRORS
MRAPI ERR_ PARAMETER Invalid attribute parameter.
MRAPI ERR RWL INVALID Argument is not a valid reader/writer lock handle.
MRAPI_ERR_ATTR_NUM Unknown attribute number
MRAPI_ERR_ATTR SIZE Incorrect attribute size
MRAPI_ERR RWL_DELETED If the reader/writer lock has been deleted then if

MRAPI ERROR EXT attribute is set, MRAPI will return
MRAPI ERR RWL DELETED otherwise MRAPI will just return
MRAPI ERR RWL INVALID.

MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE
It is up to the implementation as to whether a reader/writer lock may be shared across domains.
This is specified as an attribute during creation and the default is MRAPI FALSE.

SEE ALSO
mrapi rwl set attribute () for a list of pre-defined attribute numbers.

The Multicore Association November 15, 2010 Page 62 of 160

MRAPI| APl Specification V1.0

3.3.3.5 MRAPI_RWL_GET

NAME
mrapi rwl get

SYNOPSIS
#include <mrapi.h>

mrapi rwl hndl t mrapi rwl get(
MRAPI IN mrapi rwl id t rwl id,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
Given a rwl_id, this function returns the MRAPI handle for referencing that reader/writer lock.

RETURN VALUE
On success the reader/writer lock handle is returned and *status is setto MRAPI SUCCESS. On
error, *status is set to the appropriate error defined below.

ERRORS
MRAPI_ERR_RWL_ID INVALID The rwl id parameter does not refer to a valid
reader/writer lock or it was called with rwl id setto
MRAPI_RWL_ID_ANY.
MRAPI ERR NODE NOTINIT The calling node is not initialized.
MRAPI_ERR_DOMAIN_ NOTSHARED | This resource cannot be shared by this domain.
MRAPI_ERR _RWL DELETED If the reader/writer lock has been deleted then if
MRAPI ERROR_EXT attribute is set, MRAPI will return
MRAPI ERR_RWL DELETED otherwise MRAPI will just
return MRAPI ERR RWL ID INVALID.
NOTE
SEE ALSO

mrapi rwl set attribute()

The Multicore Association November 15, 2010 Page 63 of 160

MRAPI| APl Specification V1.0

3.3.3.6 MRAPI_RWL_DELETE

NAME
mrapi rwl delete

SYNOPSIS
#include <mrapi.h>

void mrapi rwl delete(
MRAPI IN mrapi rwl hndl t rwl,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
This function deletes the reader/writer lock. A reader/writer lock can only be deleted if it is not
locked. If the reader/writer lock attributes indicate extended error checking is enabled then all
subsequent lock requests will be notified that the reader/writer lock was deleted.

RETURN VALUE
On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. When extended error checking is enabled, if this function is called on a reader/writer
lock that no longer exists, an MRAPI ERR RWL DELETED error code will be returned. When
extended error checking is disabled, the MRAPI ERR RWL INVALID error will be returned.

ERRORS
MRAPI ERR RWL INVALID Argument is not a valid reader/writer lock handle.
MRAPI_ERR_RWL_LOCKED The reader/writer lock was locked and cannot be deleted.
MRAPI_ERR RWL_DELETED If the reader/writer lock has been deleted then if

MRAPI ERROR EXT attribute is set, MRAPI will return
MRAPI ERR RWL DELETED otherwise MRAPI will just return
MRAPI ERR RWL INVALID.

MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 64 of 160

MRAPI| APl Specification V1.0

3.3.3.7 MRAPI_RWL_LOCK

NAME

mrapi rwl lock

SYNOPSIS
#include <mrapi.h>

void mrapi rwl lock(

MRAPI IN mrapi rwl hndl t rwl,
MRAPI IN mrapi rwl mode t mode,
MRAPI IN mrapi timeout t timeout,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

This function attempts to obtain a single lock on the reader/writer lock and will block until a lock is
available or the timeout is reached (if timeout is non-zero). A node may only have one reader lock or
one writer lock at any given time. The mode parameter is used to specify the type of lock:

MRAPI READER (shared) or MRAPTI WRITER (exclusive). If the lock can’'t be obtained for some
other reason, this function will return the appropriate error code below.

RETURN VALUE

On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. When extended error checking is enabled, if lock is called on a reader/writer lock
that no longer exists, an MRAPI ERR RWL DELETED error code will be returned. When extended
error checking is disabled, the MRAPI ERR RWL INVALID error will be returned. In both cases the

attempt to lock will fail.

ERRORS

MRAPI ERR RWL INVALID

Argument is not a valid reader/writer lock handle.

MRAPI_ERR_RWL DELETED

If the reader/writer lock has been deleted then if

MRAPI ERROR_EXT attribute is set, MRAPI will return
MRAPI ERR RWL DELETED otherwise MRAPI will just return
MRAPI ERR RWL INVALID.

MRAPI TIMEOUT

Timeout was reached.

MRAPI ERR RWL LOCKED

The caller already has a lock

MRAPI ERR PARAMETER

Invalid mode.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010 Page 65 of 160

MRAPI| APl Specification V1.0

3.3.3.8 MRAPI_RWL_TRYLOCK

NAME
mrapi rwl trylock

SYNOPSIS
#include <mrapi.h>

mrapi boolean t mrapi rwl trylock(
MRAPI IN mrapi rwl hndl t rwl,
MRAPI IN mrapi rwl mode t mode,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
This function attempts to obtain a single lock on the reader/writer lock. A node may only have one
reader lock or one writer lock at any given time. The mode parameter is used to specify the type of
lock: MRAPI READER (shared) or MRAPI WRITER (exclusive). If the lock can’t be obtained because
a reader lock was requested and there is already a writer lock or a writer lock was requested and
there is already any lock then the function will immediately return MRAPI FALSE and status will be
setto MRAPI SUCCESS. If the request can't be satisfied for any other reason, then this function will
immediately return MRAPI FALSE and status will be set to the appropriate error code below.

RETURN VALUE
Returns MRAPI TRUE if the lock was acquired, returns MRAPI FALSE otherwise. If there was an
error then *status will be set to indicate the error from the table below, otherwise *status will
indicate MRAPI SUCCESS. If the lock could not be obtained then *status will be either
MRAPI ELOCKED or one of the error conditions in the table below. When extended error checking is
enabled, if trylock is called on a reader/writer lock that no longer exists, an
MRAPI ERR RWL DELETED error code will be returned. When extended error checking is disabled,
the MRAPI ERR RWL INVALID error will be returned and the lock will fail.

ERRORS

MRAPI_ERR_RWL_INVALID Argument is not a valid reader/writer lock handle.

MRAPI_ERR RWL_DELETED If the reader/writer lock has been deleted then if
MRAPI ERROR EXT attribute is set, MRAPI will return
MRAPI ERR RWL DELETED otherwise MRAPI will just return
MRAPI ERR RWL INVALID.

MRAPI_ERR_RWL_LOCKED The reader/writer lock is already exclusively locked.

MRAPI ERR PARAMETER Invalid mode.

MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 66 of 160

MRAPI| APl Specification V1.0

3.3.3.9 MRAPI_RWL_UNLOCK

NAME

mrapi rwl unlock

SYNOPSIS
#include <mrapi.h>

void mrapi rwl unlock (
MRAPI IN mrapi rwl hndl t rwl,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION

This function releases a single lock. The lock to be released will be either a reader lock or a writer
lock, as specified by the mode parameter used when the lock was obtained.

RETURN VALUE
On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. When extended error checking is enabled, if this function is called on a reader/writer
lock that no longer exists, an MRAPI ERR_RWL DELETED error code will be returned. When
extended error checking is disabled, the MRAPI ERR RWL INVALID error will be returned.

ERRORS
MRAPI_ERR_RWL_INVALID Argument is not a valid reader/writer lock handle.
MRAPI ERR RWL NOTLOCKED This node does not currently hold the given type (reader/writer)
of lock.
MRAPI_ERR_RWL_DELETED If the reader/writer lock has been deleted then if
MRAPI ERROR_EXT attribute is set, MRAPI will return
MRAPI ERR RWL DELETED otherwise MRAPI will just return
MRAPI ERR RWL INVALID.
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.
NOTE
SEE ALSO

The Multicore Association November 15, 2010 Page 67 of 160

MRAPI| APl Specification V1.0

3.4 Memory

MRAPI supports two memory concepts: shared memory and remote memory. Shared memory is
semantically the same as shared memory in, e.g., POSIX except that it is also supported for
heterogeneous systems (here heterogeneity may mean hardware or software), otherwise there would
be no need to have it in the MRAPI standard. Remote memory caters to non-uniform memory
architecture machines such as the Cell processor, where the SPEs cannot access PPE main memory
via load and store instructions, and must use DMA or a software cache, or special purpose accelerators
such as graphics processing units which also use DMA.

For both memory types, remote and shared, a node must attach before using the memory and detach
when finished.

The Multicore Association November 15, 2010 Page 68 of 160

MRAPI| APl Specification V1.0

34.1 Shared Memory

MRAPI shared memory provides functionality to create and get shared memory segments, attach them
to the application’s private memory space, query the memory attributes and detach and delete the
memory segments. For a detailed description of MRAPI memory semantics refer to Section 2.4. The
minimum MRAPI shared memory is considered application/user-level; implementations could define
additional attributes which specify various privilege levels but this should be used with caution as it can
seriously inhibit application portability.

For shared memory, MRAPI allows the creator of the memory handle to specify which nodes are
allowed to access the shared memory region. In some cases this will cause MRAPI to return an error
code if the request cannot be satisfied. An example of this would be the IBM Cell processor in which the
main core and the dedicated processing engines do not have access to physically shared memory.

The Multicore Association November 15, 2010 Page 69 of 160

MRAPI| APl Specification V1.0

34.11 MRAPI SHMEM_CREATE

NAME

mrapi shmem create

SYNOPSIS

#include <mrapi.h>

mrapi shmem hndl t mrapi shmem create(

MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN

mrapi shmem id t shmem id,

mrapi uint t size,

mrapi node t* nodes,

mrapi uint t nodes size,

mrapi shmem attributes t* attributes,

MRAPI OUT mrapi_ status t* status

)7

DESCRIPTION

This function creates a shared memory segment. The size parameter specifies the size of the
shared memory region in bytes. Unless you want the defaults, attributes must be set before the call
tomrapi shmem create (). A list of nodes that can access the shared memory can be passed in
the nodes parameter and nodes_size should contain the number of nodes in the list. If nodes is
NULL, then all nodes will be allowed to access the shared memory. Once a shared memory
segment has been created, its attributes may not be changed. If the attributes parameter is
NULL, then implementation-defined default attributes will be used. In the case where the shared
memory segment already exists, status will be set to MRAPI EXISTS and the handle returned will
not be a valid handle. If shmem id is setto MRAPI SHMEM ID ANY, then MRAPI will choose an
internal id for you. All nodes in the nodes list must be initialized nodes in the system.

RETURN VALUE

On success a shared memory segment handle is returned, the address is filled in and *status is
set to MRAPI SUCCESS. On error, *status is set to the appropriate error defined below.

ERRORS
MRAPI_ERR_SHMEM ID_INVALID The shmem_1id is not a valid shared memory segment
id.
MRAPI_ERR_SHM NODES_INCOMPAT The list of nodes is not compatible for setting up shared
memory.
MRAPI ERR SHM EXISTS This shared memory segment is already created.
MRAPI ERR MEM LIMIT No memory available.
MRAPI ERR NODE NOTINIT The calling node is not initialized or one of the nodes in
the list of nodes to share with is not initialized.
MRAPI ERR PARAMETER Incorrect size, attributes, attribute size, Or
nodes_size parameter.
NOTE
SEE ALSO

Seemrapi shmem init attributes () andmrapi shmem set attribute().

The Multicore Association November 15, 2010 Page 70 of 160

MRAPI| APl Specification V1.0

3.4.1.2 MRAPI_SHMEM_INIT_ATTRIBUTES

NAME

mrapi shmem init attributes

SYNOPSIS
#include <mrapi.h>

void mrapi shmem init attributes(
MRAPI OUT mrapi shmem attributes t* attributes,
MRAPI OUT mrapi status t* status

)i

DESCRIPTION

Unless you want the defaults, this call must be used to initialize the values of an

mrapi shmem attributes_t structure prior to mrapi shmem set attribute (). You would
then use mrapi shmem set attribute () to change any default values prior to calling
mrapi shmem create().

RETURN VALUE

On success *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS

MRAPI ERR_ PARAMETER Invalid attributes parameter.

MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 71 of 160

MRAPI| APl Specification V1.0

3.4.1.3 MRAPI_SHMEM_SET_ATTRIBUTE

NAME
mrapi shmem set attribute

SYNOPSIS
#include <mrapi.h>

void mrapi shmem set attribute(
MRAPI OUT mrapi shmem attributes t* attributes,
MRAPI IN mrapi uint t attribute num,
MRAPI IN void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status
) i

DESCRIPTION
This function is used to change default values of an mrapi shmem attributes_ t data structure
prior to calling mrapi shmem create (). If the user wants to control which physical memory is
used, then that is done by setting the MRAPI SHMEM RESOURCE attribute to the resource in the
metadata tree. The user would first need to call mrapi resources_ get () and then iterate over
the tree to find the desired resource (see the example use case for more details).

MRAPI-defined shared memory attributes:
Attribute num Description Data Type Default

MRAPI SHMEM RESOURCE | The physical mrapi resource t [MRAPI SHMEM ANY
memory resource in
the metadata
resource tree that
the memory should
be allocated from.

MRAPI SHMEM ADDRESS | The requested mrapi_uint_t MRAPI_SHMEM_ADD
address for a R _ANY
shared memory
region

MRAPI DOMAIN SHARED Indicates whether or mrapi_boolean_t MRAPI TRUE
not this remote
memory is
shareable across
domains.

MRAPI SHMEM SIZE Returns the size of | mrapi_size_t No default.
the shared memory
segment in bytes.
This attribute can
only be set through
the size parameter
passed in to create.

The Multicore Association November 15, 2010 Page 72 of 160

MRAPI| APl Specification V1.0

MRAPI SHMEM ANY
then not
necessarily
contiguous, if
<address> then
contiguous; non-
contiguous
should be used
with care and will
not work in
contexts that
cannot handle
virtual memory

Attribute num Description Data Type Default
MRAPI SHMEM ADDRESS | if mrapi addr t MRAPI SHMEM ANY
_CONTIGUOUS

RETURN VALUE

On success *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR ATTR READONLY

Attribute cannot be modified.

MRAPI ERR PARAMETER

Invalid attribute parameter.

MRAPI_ERR_ATTR NUM

Unknown attribute number

MRAPI ERR ATTR SIZE

Incorrect attribute size

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010

Page 73 of 160

MRAPI| APl Specification V1.0

34.14 MRAPI_SHMEM_GET_ATTRIBUTE

NAME
mrapi shmem get attribute

SYNOPSIS
#include <mrapi.h>

void mrapi shmem get attribute(
MRAPI IN mrapi shmem hndl t shmem,
MRAPI IN mrapi uint t attribute num,
MRAPI OUT void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status

)i

DESCRIPTION
Returns the attribute that corresponds to the given attribute num for this shared memory. The
attributes may be viewed but may not be changed (for this shared memory).

RETURN VALUE
On success *status is setto MRAPI SUCCESS and the attribute value is filled in. On error,
*status is set to the appropriate error defined below and the attribute value is undefined. The
attribute identified by the attribute numis returned in the void* attribute parameter.

ERRORS
MRAPI ERR_ PARAMETER Invalid attribute parameter.
MRAPI ERR_SHM INVALID Argument is not a valid shmem handle.
MRAPI_ERR_ATTR NUM Unknown attribute number
MRAPI_ERR_ATTR SIZE Incorrect attribute size
MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO
mrapi shmem set attribute () for a list of pre-defined attribute numbers.

The Multicore Association November 15, 2010 Page 74 of 160

MRAPI| APl Specification V1.0

3.4.1.5 MRAPI_SHMEM_GET

NAME
mrapi shmem get

SYNOPSIS
#include <mrapi.h>

mrapi shmem hndl t mrapi shmem get (

MRAPI IN mrapi shmem id t shmem id,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

Given a shmem_1id this function returns the MRAPI handle for referencing that shared memory

segment.

RETURN VALUE

On success the shared memory segment handle is returned and *status is set to
MRAPI SUCCESS. On error, *status is set to the appropriate error defined below.

ERRORS

MRAPI ERR_SHMEM ID INVALID

The shmem_1id is not a valid shared memory id or it
was called with shmem_id set to
MRAPI SHMEM ID ANY.

MRAPI ERR _NODE NOTINIT

The calling node is not initialized.

MRAPI_ERR_SHM NODE_NOTSHARED

This shared memory is not shareable with the calling
node. Which nodes it is shareable with was specified
on the call to mrapi shmem create().

MRAPI ERR DOMAIN NOTSHARED

This resource cannot be shared by this domain.

NOTE

Shared memory is the only MRAPI primitive that is always shareable across domains. Which nodes
it is shared with is specified in the call to mrapi shmem create().

SEE ALSO

The Multicore Association November 15, 2010 Page 75 of 160

MRAPI| APl Specification V1.0

3.4.1.6 MRAPI_SHMEM_ATTACH

NAME
mrapi shmem attach

SYNOPSIS
#include <mrapi.h>

void* mrapi shmem attach(
MRAPI IN mrapi shmem hndl t shmem,
MRAPI OUT mrapi status t* status
);

DESCRIPTION
This function attaches the caller to the shared memory segment and returns its address.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR SHM INVALID Argument is not a valid shared memory segment handle.
MRAPI_ERR_SHM ATTACHED The calling node is already attached to the shared memory.
MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 76 of 160

MRAPI| APl Specification V1.0

3.4.1.7 MRAPI_SHMEM_DETACH

NAME
mrapi shmem detach

SYNOPSIS
#include <mrapi.h>

void mrapi shmem detach (
MRAPI IN mrapi shmem hndl t shmem,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION

This function detaches the caller from the shared memory segment. All nodes must detach before
any node can delete the memory.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR_SHMEM INVALID Argument is not a valid shared memory segment handle.
MRAPI_ERR_SHM NOTATTACHED | The calling node is not attached to the shared memory.
MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 77 of 160

MRAPI| APl Specification V1.0

3.4.1.8 MRAPI_SHMEM_DELETE

NAME
mrapi shmem delete

SYNOPSIS
#include <mrapi.h>

void mrapi shmem delete (
MRAPI IN mrapi shmem hndl t shmem,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION

This function deletes the shared memory segment if there are no nodes still attached to it. All nodes
must detach before any node can delete the memory. Otherwise, delete will fail and there are no
automatic retries nor deferred delete.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI_ERR_SHM INVALID Argument is not a valid shared memory segment handle.
MRAPI_ERR_SHM ATTCH There are nodes still attached to this shared memory segment
thus it could not be deleted.
MRAPI ERR NODE NOTINIT The calling node is not intialized.
NOTE
SEE ALSO

The Multicore Association November 15, 2010 Page 78 of 160

MRAPI| APl Specification V1.0

3.4.2 Remote Memory

The Remote Memory API’s allow buffers in separate memory subsystems that are not directly
accessible to be shared buffers. This can be accomplished if either CPU can see both memory regions,
or if a DMA engine can provide a data path to move the memory, or through some other form of
communication that can perform the data transfer. These methods can optionally include a software
cache.

If a CPU in the system can see both memory regions, then it can directly perform the memory transfers
between memory spaces. A remote CPU node may not have access and must request the CPU that
has access to perform any synchronization requests.

In a DMA transfer method, the DMA must have access to both memory regions. This entails set up of
the buffer to be initially transferred between memory regions. The initial buffer and the copy are ready
for access by either node. DMA can be used independently of a software cache or in conjunction with a
software cache.

A software cache is similar to a hardware cache, and gives the ability to synchronize between different
CPU’s accessing the same memory structure which makes the accesses by both CPU’s coherent. For
example, when any write access is performed on a remote memory buffer, the result can be
immediately stored in the software cache. If another CPU does a read or write access to the same
region of the buffer, the software cache must communicate between CPU’s and synchronize the buffer
between remote memory regions prior to performing the buffer access. A sync command will force the
remotely shared memory region to be synchronized.

The Multicore Association November 15, 2010 Page 79 of 160

MRAPI| APl Specification V1.0

34.2.1 MRAPI_RMEM_CREATE

NAME

mrapi rmem create

SYNOPSIS
#include <mrapi.h>

mrapi rmem hndl t mrapi rmem create(
MRAPI IN mrapi rmem id t rmem id,
MRAPI IN void* mem,
MRAPI IN mrapi rmem atype t access type,
MRAPI IN mrapi rmem attributes t* attributes,
MRAPI IN mrapi uint t size,
MRAPI OUT mrapi_ status t* status

) i

DESCRIPTION
This function promotes a private or shared memory segment on the calling node to a remote
memory segment and returns a handle. The mem parameter is a pointer to the base address of the
local memory buffer (see Section 2.4.2). Once a memory segment has been created, its attributes
may not be changed. If the attributes are NULL, then implementation-defined default attributes will
be used. If rmem id is setto MRAPI RMEM ID ANY, then MRAPI will choose an internal id.
access_type specifies access semantics. Access semantics are per remote memory buffer
instance, and are either strict (meaning all clients must use the same access type), or any (meaning
that clients may use any type supported by the MRAPI implementation). Implementations may
define multiple access types (depending on underlying silicon capabilities), but must provide at
minimum: MRAPI RMEM ATYPE ANY (which indicates any semantics), and
MRAPI RMEM ATYPE DEFAULT, which has strict semantics Note that MRAPI RMEM ATYPE ANY is
only valid for remote memory buffer creation, clients must use MRAPI RMEM ATYPE DEFAULT of
another specific type of access mechanism provided by the MRAPI implementation (DMA, etc.)
Specifying any type of access (even default) other than MRAPTI RMEM ATYPE ANY forces strict
mode. The access type is explicitly passed in to create rather than being an attribute because it is
so system specific, there is no easy way to define an attribute with a default value.

RETURN VALUE
On success a remote memory segment handle is returned, the address is filled in and *status is
setto MRAPI SUCCESS. On error, *status is set to the appropriate error defined below. In the
case where the remote memory segment already exists, status will be set to MRAPI EXISTS and
the handle returned will not be a valid handle.

ERRORS
MRAPI_ERR_RMEM ID_INVALID The rmem_1id is not a valid remote memory segment id.
MRAPI ERR RMEM EXISTS This remote memory segment is already created.
MRAPI_ERR_MEM LIMIT No memory available.
MRAPI_ERR_RMEM_ TYPENOTVALID | Invalid access type parameter
MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.
MRAPI_ERR PARAMETER Incorrect attributes, rmem, Or size parameter.
MRAPI ERR RMEM CONFLICT The memory pointer + size collides with another remote

memory segment.

The Multicore Association November 15, 2010 Page 80 of 160

MRAPI| APl Specification V1.0

NOTE

This function is for promoting a segment of local memory (heap or stack, but stack would be
dangerous and should be done with care) or an already created shared memory segment to rmem,
but that also should be done with care.

SEE ALSO
Seemrapi rmem init attributes() andmrapi rmem set attribute().
See data types identifiers discussion: Section 2.11.13, access types: Section 2.4.2.

The Multicore Association November 15, 2010 Page 81 of 160

MRAPI| APl Specification V1.0

3.4.2.2 MRAPI_RMEM_INIT_ATTRIBUTES

NAME

mrapi rmem init attributes

SYNOPSIS
#include <mrapi.h>

void mrapi rmem init attributes(
MRAPI OUT mrapi rmem attributes t* attributes,
MRAPI OUT mrapi status t* status

)i

DESCRIPTION

Unless you want the defaults, this call must be used to initialize the values of an

mrapl rmem attributes t structure prior to mrapi rmem set attribute (). You would
then use mrapi rmem set attribute () tochange any default values prior to calling
mrapi rmem create().

RETURN VALUE

On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR PARAMETER Invalid attributes parameter
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.
NOTE
SEE ALSO

The Multicore Association November 15, 2010 Page 82 of 160

MRAPI| APl Specification V1.0

3.4.2.3 MRAPI_RMEM_SET_ATTRIBUTE

NAME

mrapi rmem set attribute

SYNOPSIS
#include <mrapi.h>

void mrapi rmem set attribute(
MRAPI OUT mrapi rmem attributes t* attributes,
MRAPI IN mrapi uint t attribute num,
MRAPI IN void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status

)7

DESCRIPTION

This function is used to change default values of an mrapi rmem attributes_t data structure
prior to calling mrapi rmem create().

MRAPI-defined remote memory attributes:

Attribute num Description Data Type

Default

MRAPI DOMAIN SHARED Indicates whether or | mrapi boolean t
not this remote
memory is shareable
across domains.

MRAPI TRUE

RETURN VALUE

On success *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR ATTR READONLY

Attribute cannot be modified.

MRAPI ERR PARAMETER

Invalid attribute parameter.

MRAPI_ERR_ATTR NUM

Unknown attribute number

MRAPI ERR ATTR SIZE

Incorrect attribute size

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010

Page 83 of 160

MRAPI| APl Specification V1.0

3.4.24 MRAPI_RMEM_GET_ATTRIBUTE

NAME
mrapi rmem get attribute

SYNOPSIS
#include <mrapi.h>

void mrapi rmem get attribute(
MRAPI IN mrapi rmem hndl t rmem,
MRAPI IN mrapi uint t attribute num,
MRAPI OUT void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi status t* status

) i

DESCRIPTION
Returns the attribute that corresponds to the given attribute num for this remote memory. The
attributes may be viewed but may not be changed (for this remote memory).

RETURN VALUE
On success *status is setto MRAPI SUCCESS and the attribute value is filled in. On error,
*status is set to the appropriate error defined below and the attribute value is undefined. The
attribute identified by the attribute numis returned in the void* attribute parameter.

ERRORS
MRAPI_ERR_PARAMETER Invalid attribute parameter.
MRAPI ERR RMEM INVALID Argument is not a valid remote memory handle.
MRAPI_ERR_ATTR_NUM Unknown attribute number
MRAPI_ERR_ATTR SIZE Incorrect attribute size
MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO
mrapi rmem set attribute () for a list of pre-defined attribute numbers.

The Multicore Association November 15, 2010 Page 84 of 160

MRAPI| APl Specification V1.0

3.4.2.5 MRAPI_RMEM_GET

NAME

mrapi rmem get

SYNOPSIS

#include <mrapi.h>

mrapi rmem hndl t mrapi rmem get(
MRAPI IN mrapi rmem id t rmem id,
MRAPI IN mrapi rmem atype t access type,
MRAPI OUT mrapi status t* status

)i

DESCRIPTION

Given a rmem_id, this function returns the MRAPI handle referencing to that remote memory
segment. access_type specifies access semantics. Access semantics are per remote memory
buffer instance, and are either strict (meaning all clients must use the same access type), or any
(meaning that clients may use any type supported by the MRAPI implementation). Implementations
may define multiple access types (depending on underlying silicon capabilities), but must provide at
minimum: MRAPI RMEM ATYPE ANY (which indicates any semantics), and

MRAPI RMEM ATYPE DEFAULT, which has strict semantics Note that MRAPI RMEM ATYPE ANY is
only valid for remote memory buffer creation, clients must use MRAPI RMEM ATYPE DEFAULT of
another specific type of access mechanism provided by the MRAPI implementation (DMA, etc.) The
access type must match the access type that the memory was created with unless the memory was
created with the MRAPI RMEM ATYPE ANY type. See Section 2.4.2 for a discussion of remote
memory access types.

RETURN VALUE

On success the remote memory segment handle is returned and *status is set to
MRAPI SUCCESS. On error, *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_RMEM ID_INVALID The rmem_id parameter does not refer to a valid remote
memory segment or it was called with rmem_id set to
MRAPI RMEM ID ANY.

MRAPI ERR RMEM ATYPE INVALID Invamjaccess_typepamunmet

MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.
MRAPI ERR DOMAIN NOTSHARED This resource cannot be shared by this domain.
MRAPI_ERR_RMEM ATYPE Type specified on attach is incompatible with type

specified on create.

NOTE

SEE ALSO

mrapl rmem set attribute (),accesstypes: Section 2.4.2

The Multicore Association November 15, 2010 Page 85 of 160

MRAPI| APl Specification V1.0

3.4.2.6 MRAPI_RMEM_ATTACH

NAME

mrapi rmem attach

SYNOPSIS
#include <mrapi.h>

void mrapi rmem attach(
MRAPI IN mrapi rmem hndl t rmem,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION

This function attaches the caller to the remote memory segment. Once this is done, the caller may
use the mrapi rmem read() and mrapi rmem write () functions. The caller should call
mrapi rmem detach () when finished using the remote memory.

RETURN VALUE
On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI_ERR_RMEM INVALID Argument is not a valid remote memory segment handle.
MRAPI_ERR_RMEM ATTACHED The calling node is already attached to the remote memory.
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.
NOTE
SEE ALSO
Section 2.4.2

The Multicore Association November 15, 2010 Page 86 of 160

MRAPI| APl Specification V1.0

3.4.2.7 MRAPI_RMEM_DETACH

NAME

mrapi rmem detach

SYNOPSIS
#include <mrapi.h>

void mrapi rmem detach (

MRAPI IN mrapi rmem hndl t rmem,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

This function detaches the caller from the remote memory segment. All attached nodes must detach
before any node can delete the memory.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPTI ERR RMEM INVALID

Argument is not a valid remote memory segment handle.

MRAPI ERR RMEM NOTATTACHED

The caller is not attached to the remote memory.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010 Page 87 of 160

MRAPI| APl Specification V1.0

3.4.2.8 MRAPI_RMEM_DELETE

NAME

mrapi rmem delete

SYNOPSIS
#include <mrapi.h>

void mrapi rmem delete(
MRAPI IN mrapi rmem hndl t rmem,
MRAPI OUT mrapi status t* status
)i

DESCRIPTION
This function demotes the remote memory segment. All attached nodes must detach before the
node can delete the memory. Otherwise, delete will fail and there are no automatic retries nor
deferred delete. Note that memory is not de-allocated it is just no longer accessible via the MRAPI
remote memory function calls. Only the node that created the remote memory can delete it.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR_RMEM INVALID Argument is not a valid remote memory segment handle.
MRAPI_ERR_RMEM ATTACH Unable to demote the remote memory because other nodes

are still attached to it.

MRAPI_ERR_RMEM NOTOWNER The calling node is not the one that created the remote

memory.
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 88 of 160

MRAPI| APl Specification V1.0

3.4.2.9 MRAPI_RMEM_READ

NAME

mrapi rmem read

SYNOPSIS

#include <mrapi.h>

void mrapi rmem read(

MRAPI IN mrapi rmem hndl t rmem,
MRAPI IN mrapi uint32 t rmem offset,
MRAPI OUT void* local buf,

MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN

size t local buf size,

mrapi uint32 t
mrapi uint32 t
mrapi uint32 t
mrapi uint32 t
mrapi uint32 t

local offset,
bytes per access,
num_strides,
rmem_ stride,
local stride,

MRAPI OUT mrapi status t* status

)7

DESCRIPTION

This function performs num strides memory reads, where each read is of size

bytes per access bytes. The i-th read copies bytes per access bytes of data from rmem
with offset rmem offset + i*rmem strideto local buf with offset local offset +
i*local stride, where 0 <=i<num strides.The local buf size represents the number of
bytes in the local buf.

This supports scatter/gather type accesses. To perform a single read, without the need for
scatter/gather, set the num strides parameter to 1.

This routine blocks until memory can be read.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR RMEM INVALID

Argument is not a valid remote memory segment handle.

MRAPI ERR RMEM BUFF OVERRUN | rmem offset + (rmem stride * num strides)

would fall out of bounds of the remote memory buffer.

MRAPI ERR _RMEM STRIDE

num_strides>land rmem stride and/or
local stride arelessthan bytes per access.

MRAPI ERR RMEM NOTATTACHED

The caller is not attached to the remote memory.

MRAPI ERR PARAMETER

Either the 1ocal buf isinvalid or the buf size is zero or
bytes per access is zero.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

The Multicore Association

November 15, 2010 Page 89 of 160

MRAPI| APl Specification V1.0

SEE ALSO

The Multicore Association November 15, 2010 Page 90 of 160

MRAPI| APl Specification V1.0

3.4.210 MRAPI_RMEM_READ_I

NAME

mrapi rmem read i

SYNOPSIS

#include <mrapi.h>

void mrapi rmem read i (
MRAPI IN mrapi rmem hndl t rmem,
MRAPI IN mrapi uint32 t rmem offset,
MRAPI OUT void* local buf,

MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN

MRAPI OUT mrapi request

mrapi uint32 t
mrapi uint32 t
mrapi uint32 t
mrapi uint32 t
mrapi uint32 t

local offset,
bytes per access,
num_strides,
rmem_ stride,
local stride,
t* mrapi request,

MRAPI OUT mrapi status t* status

)7

DESCRIPTION

This (non-blocking) function performs num strides memory reads, where each read is of size
bytes per access bytes. The i-th read copies bytes per access bytes of data from rmem
with offset rmem offset + i*rmem stride to local buf with offset local offset +
i*local stride, where 0 <=i<num strides. The buffer state is undefined until the non-
blocking operation completes.

This supports scatter/gather type accesses. To perform a single read, without the need for
scatter/gather, set the num strides parameter to 1.

RETURN VALUE

On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. Use mrapi test (), mrapi wait() Ormrapi wait any() to testfor
completion of the operation.

The Multicore Association

November 15, 2010

Page 91 of 160

MRAPI| APl Specification V1.0

ERRORS

MRAPI ERR RMEM INVALID

Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM BUFF_OVERRUN

rmem offset + (rmem stride * num strides)
would fall out of bounds of the remote memory buffer.

MRAPI ERR RMEM STRIDE

num strides>land rmem stride and/or
local stride arelessthan bytes per access.

MRAPI ERR REQUEST LIMIT

No more request handles available.

MRAPI ERR RMEM NOTATTACHED

The caller is not attached to the remote memory.

MRAPI ERR RMEM BLOCKED

We have hit a hardware limit of the number of
asynchronous DMA/cache operations that can be pending
("in flight") simultaneously. Thus we now have to block
because the resource is busy.

MRAPI ERR PARAMETER

Either the 1ocal buf isinvalid or the buf size is zero or
bytes per access is zero.

MRAPI_ERR_NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

mrapi test (), mrapi wait(), mrapi wait any()

The Multicore Association

November 15, 2010 Page 92 of 160

MRAPI| APl Specification V1.0

3.4.211 MRAPI_RMEM_WRITE

NAME

mrapi rmem write

SYNOPSIS

#include <mrapi.h>

void mrapi rmem write (

MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN
MRAPI IN

mrapi rmem hndl t rmem,

mrapi uint32 t

rmem_offset,

void* local buf,

mrapi uint32 t
mrapi uint32 t
mrapi uint32 t
mrapi uint32 t
mrapi uint32 t

local offset,
bytes per access,
num_strides,
rmem_ stride,
local stride,

MRAPI OUT mrapi status t* status

);

DESCRIPTION

This function performs num_strides memory writes, where each write is of size

bytes per access bytes. The i-th write copies bytes per access bytes of data from

local buf with offset local offset + i*local stride to rmem with offset rmem offset +
i*rmem stride, where 0 <=i<num strides.

This supports scatter/gather type accesses. To perform a single write, without the need for
scatter/gather, set the num strides parameter to 1.

This routine blocks until memory can be written.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR RMEM INVALID

Argument is not a valid remote memory segment handle.

MRAPI ERR RMEM BUFF OVERRUN | rmem offset + (rmem stride * num strides)

would fall out of bounds of the remote memory buffer.

MRAPI_ERR_RMEM STRIDE

num strides>land rmem stride and/or
local stride arelessthan bytes per access.

MRAPI ERR RMEM NOTATTACHED

The caller is not attached to the remote memory.

MRAPI ERR PARAMETER

Either the 1ocal buf isinvalid or bytes per accessis
Zero.

MRAPI_ERR _NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010 Page 93 of 160

MRAPI| APl Specification V1.0

3.4.212 MRAPI_RMEM_WRITE_I

NAME

mrapi rmem write i

SYNOPSIS
#include <mrapi.h>

void mrapi rmem write i (

MRAPI IN mrapi rmem hndl t rmem,
MRAPI IN mrapi uint32 t rmem offset,

MRAPI IN void* local buf,

MRAPI IN mrapi uint32 t local offset,
MRAPI IN mrapi uint32 t bytes per access,
MRAPI IN mrapi uint32 t num strides,
MRAPI IN mrapi uint32 t rmem stride,
MRAPI IN mrapi uint32 t local stride,
MRAPI OUT mrapi request t* mrapi request,

MRAPI OUT mrapi status t*
) i

DESCRIPTION

status

This (non-blocking) function performs num strides memory writes, where each write is of size
bytes per access bytes. The i-th write copies bytes per access bytes of data from

local buf with offset local offset + i*local stride to rmem with offset rmem offset +
i*rmem stride, where 0 <=i<num strides. The write is not complete until indicated by the

mrapi request parameter.

This supports scatter/gather type accesses. To perform a single write, without the need for
scatter/gather, set the num strides parameter to 1.

RETURN VALUE

On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below. Use mrapi test (), mrapi wait () ormrapi wait any () to test for

completion of the operation.

ERRORS

MRAPI ERR RMEM INVALID

Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM BUFF OVERRUN

rmem offset + (rmem stride * num strides)
would fall out of bounds of the remote memory buffer.

MRAPI ERR _RMEM STRIDE

num_strides>land rmem stride and/or
local stride arelessthan bytes per access.

MRAPI ERR REQUEST LIMIT

No more request handles available.

MRAPI ERR RMEM NOTATTACHED

The caller is not attached to the remote memory.

MRAPI ERR RMEM BLOCKED

We have hit a hardware limit of the number of
asynchronous DMA/cache operations that can be
pending ("in flight") simultaneously. Thus we now
have to block because the resource is busy.

MRAPI ERR PARAMETER

Either the 1ocal buf isinvalid or bytes per accessis
Zero.

The Multicore Association

November 15, 2010 Page 94 of 160

MRAPI| APl Specification V1.0

MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi test (), mrapi wait(), mrapi wait any()

The Multicore Association November 15, 2010 Page 95 of 160

MRAPI| APl Specification V1.0

3.4.213 MRAPI_RMEM_FLUSH

NAME

mrapi rmem flush

SYNOPSIS
#include <mrapi.h>

void mrapi rmem flush (
MRAPI IN mrapi rmem hndl t rmem,
MRAPI OUT mrapi status t* status
) i

DESCRIPTION
This function flushes the remote memory. Support for this function is optional and on some
systems this may not be supportable. However, if an implementation wants to support coherency
back to main backing store then this is the way to do it. Note, that this is not an automatic synch
back to other viewers of the remote data and they would need to also perform a synch, so it is
‘application managed’ coherency. If writes are synchronizing, then a flush will be a no-op.

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR NOT SUPPORTED The flush call is not supported
MRAPI_ERR_RMEM INVALID Argument is not a valid remote memory segment handle.
MRAPI ERR_RMEM NOTATTACHED | The caller is not attached to the remote memory.
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 96 of 160

MRAPI| APl Specification V1.0

3.4.214 MRAPI_RMEM_SYNC

NAME

mrapi rmem sync

SYNOPSIS
#include <mrapi.h>

void mrapi rmem sync(
MRAPI IN mrapi rmem handle t rmem,
MRAPI OUT mrapi status t* status
) i

DESCRIPTION
This function synchronizes the remote memory. This function provides application managed
coherency. It does not guarantee that all clients of the rmem buffer will see the updates, see
corresponding mrapi rmem flush (). For some underlying hardware this may not be possible.
MRAPI implementation can return an error if the synch cannot be performed.

RETURN VALUE

On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI_ERR_NOT_SUPPORTED The synch call is not supported
MRAPI ERR_RMEM INVALID Argument is not a valid remote memory segment handle.
MRAPI ERR_RMEM NOTATTACHED | The caller is not attached to the remote memory.
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 97 of 160

MRAPI| APl Specification V1.0

3.5 Non-Blocking Operations

The MRAPI provides both blocking and non-blocking versions of communication functions that may be
delayed because the implementation requires synchronization between multiple nodes. The non-
blocking version of functions is denoted by an _1i () suffix. For example, the mrapi rmem write ()
function copies a data buffer from local memory to a remote shared memory buffer. Since the data copy
operation might take many cycles, MRAPI also provides mrapi rmem write i () function, which
initiates the DMA operation and returns immediately. Like all non-blocking functions,
mrapi rmem write 1i() fillsinamrapi request t object before returning.

The mrapi request_t object provides a unique identifier for each in-flight non-blocking operation.
These ‘request handles' can be passed to the mrapi test (), mrapi wait(), or

mrapi wait any () methods in order to find out when the non-blocking operation has completed.
When one of these API calls determines that a non-blocking request has finished, it returns indicating
completion and fills in an mrapi status_t object to indicate why the request completed. The status
object contains an error code indicating whether the operation finished successfully or was terminated
because of an error. The mrapi request t is an opaque data type and the user should not attempt
to examine it.

Non-blocking operations may consume system resources until the programmer confirms completion by
caling mrapi test(), mrapi wait(), Ormrapi wait any (). Thus, the programmer should be
sure to confirm completion of every non-blocking operation via these APIs. Alternatively, an in-flight
operation can be cancelled by calling mrapi cancel (). This function forces the operations specified
by the mrapi request t object to stop immediately, releasing any system resources allocated in
order to perform the operation.

The Multicore Association November 15, 2010 Page 98 of 160

MRAPI| APl Specification V1.0

351 MRAPL_TEST

NAME
mrapi_test

SYNOPSIS
#include <mrapi.h>

mrapi boolean t mrapi test(

MRAPI IN mrapi request t* request,

MRAPI OUT size t* size,

MRAPI OUT mrapi status t* status

)7

DESCRIPTION

mrapi test () checks if a non-blocking operation has completed. The function returns in a timely
fashion. request is the identifier for the non-blocking operation. The size parameter is not
currently used but is there to align with MCAPI.

RETURN VALUE

On success, MRAPI TRUE is returned and *status is set to MRAPI SUCCESS. If the operation has
not completed MRAPI FALSE is returned and *status is set to MRAPI INCOMPLETE. On error,
MRAPI FALSE is returned and *status is setto the appropriate error defined below.

ERRORS

MRAPI ERR REQUEST INVALID

Argument is not a valid request handle.

MRAPI ERR REQUEST CANCELED

The request was canceled.

MRAPI ERR NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010 Page 99 of 160

MRAPI| APl Specification V1.0

35.2 MRAPI_WAIT

NAME

mrapi wait

SYNOPSIS
#include <mrapi.h>

mrapi boolean t mrapi wait(

MRAPI IN mrapi request t* request,

MRAPI OUT size t* size,

MRAPI IN mrapi timeout t timeout,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

mrapi wait () waits until a non-blocking operation has completed. It is a blocking function and
returns when the operation has completed, has been canceled, or a timeout has occurred.
request is the identifier for the non-blocking operation. The size parameter is not currently used

but is there to align with MCAPI.

RETURN VALUE

On success MRAPI TRUE is returned and status is set to MRAPI SUCCESS. On error
MRAPI FALSE is returned and *status is set to the appropriate error defined below.

ERRORS

MRAPI ERR REQUEST INVALID

Argument is not a valid request handle.

MRAPI ERR REQUEST CANCELED

The request was canceled.

MRAPI TIMEOUT

The operation timed out.

MRAPI ERR _NODE NOTINIT

The calling node is not intialized.

SEE ALSO

The Multicore Association

November 15, 2010 Page 100 of 160

MRAPI| APl Specification V1.0

353 MRAPI_WAIT_ANY

NAME
mrapi wait any

SYNOPSIS
#include <mrapi.h>

mrapi uint t mrapi wait any(
MRAPI IN size t num requests,
MRAPI IN mrapi request t* requests,
MRAPI OUT size t* size,
MRAPI IN mrapi timeout t timeout ,
MRAPI OUT mrapi_ status t* status

) i

DESCRIPTION
mrapi wait any () waits until any non-blocking operation of a list has completed. It is a blocking
function and returns the index into the requests array (starting from 0) indicating which of any
outstanding operation has completed. If more than one request has completed, it will return the first
one it finds. number is the number of requests in the array. requests is the array of
mrapi request t identifiers for the non-blocking operations. The size parameter is not currently
used but is there to align with MCAPI.

RETURN VALUE
On success, returns the index into the requests array of the mrapi request _t identifier that has
completed or has been canceled is returned and *status is setto MRAPI SUCCESS. On error, -1
is returned and *status is set to the appropriate error defined below.

ERRORS

MRAPI ERR_REQUEST_INVALID | Argument is not a valid request handle.

MRAPI ERR_REQUEST_CANCELED | The request was canceled.

MRAPI TIMEOUT The operation timed out.
MRAPI ERR PARAMETER Incorrect number (if=0) requests parameter.
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 101 of 160

MRAPI| APl Specification V1.0

3,54 MRAPI_CANCEL

NAME
mrapi cancel

SYNOPSIS
#include <mrapi.h>

void mrapi cancel (

MRAPI IN mrapi request t* request,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

mrapi cancel () cancels an outstanding request. Any pending calls to mrapi wait () or
mrapi wait any () for this request will also be cancelled. The returned status of a canceled
mrapi wait () ormrapi wait any () call will indicate that the request was cancelled. Only the
node that initiated the request may call cancel.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR REQUEST INVALID

Argument is not a valid request handle for this node.

MRAPI ERR _NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

The Multicore Association

November 15, 2010 Page 102 of 160

MRAPI| APl Specification V1.0

3.6 Metadata

MRAPI supports the searching and querying of metadata about the host system. The host system has a
set of resources, with each resource having a set of attributes. Each attribute has a value.

A central concept of the MRAPI metadata support is the data structure that represents resources in a
system. A call to mrapi resources_ get () will result in the creation of a data structure in the form of
a tree. The nodes are the resources, and the edges represent scope (not ownership). By navigating the
data structure, the user can locate the resource desired, and then use the

mrapl resource get attribute () function to obtains the value of an attribute. The function
mrapi resource tree free() is used to free the memory used by the data structure. A node can
only see the resources in its domain and a given domain’s scope may change over time if the system is
repartitioned for power, hypervisor, etc.

The source for the MRAPI metadata system resources can be initialized in several ways. Each
implementation upon initialization can obtain resource information from a number of ways, including
from standard information systems like SPIRIT Consortium’s IP-XACT and Linux device trees.

The MRAPI metadata supports dynamic attributes (attributes with values that change in time). MRAPI
supports the ability to start, stop, reset, and query dynamic attributes. Dynamics attributes are optional
and are not required to be supported by an MRAPI implemenation.

MRAPI also supports registering callbacks that are called when an event occurs. Events can include an
attribute exceeding a threshold, or a counter rollover. Callbacks are not required to be supported when
no events are defined by the implementation.

The Multicore Association November 15, 2010 Page 103 of 160

MRAPI| APl Specification V1.0

3.61 MRAPI_RESOURCES GET

NAME

mrapi resources_get

SYNOPSIS
#include <mrapi.h>

mrapi resource t* mrapi resources_get (
MRAPI IN mrapi rsrc filter t subsystem filter,
MRAPI OUT mrapi status t* status

);

DESCRIPTION

mrapl resources_get () returns a tree of system resources available to the calling node, at the
point in time when it is called (this is dynamic in nature). mrapi resource get attribute ()
can be used to make a specific query of an attribute of a specific system resource.

subsystem filter is an enumerated type that is used as a filter indicating the scope of the
desired information MRAPI returns. See Section 2.5.1 for a description of how to navigate the
resource tree as well as Section 5.1 for an example use case.

The valid subsystem filters are:
MRAPI RSRC MEM, MRAPI RSRC CACHE, MRAPI RSRC CPU

RETURN VALUE
On success, returns a pointer to the root of a tree structure containing the available system
resources, and *status is set to MRAPI SUCCESS. On error, MRAPI NULL is returned and
*status is set to the appropriate error defined below. The memory associated with the data

structures returned by this function is system managed and must be released via a call to
mrapi resource tree free().

ERRORS
MRAPI_ERR_RSRC_INVALID_ SUBSYSTEM | Argument is not a valid subsystem filter value.
MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi resource get attribute (), Section 2.5.1 and Section 2.11.4

The Multicore Association November 15, 2010 Page 104 of 160

MRAPI| APl Specification V1.0

3.6.2 MRAPI_RESOURCE_GET_ATTRIBUTE

NAME
mrapi resource get attribute

SYNOPSIS
#include <mrapi.h>

void mrapi resource get attribute(
MRAPI IN mrapi resource t* resource,
MRAPI IN mrapi uint t attribute num,
MRAPI OUT void* attribute,
MRAPI IN size t attribute size,
MRAPI OUT mrapi_ status t* status

)

DESCRIPTION
mrapi resource get attribute () returns the attribute value at the point in time when this
function is called (the value of an attribute may be dynamic in nature), given the input resource and
attribute number. resource is a pointer to the respective resource, attribute numis the
number of the attribute to query for that resource, and attribute size is the size of the attribute.
Resource attributes are read-only. Attribute numbers are assigned by the MRAPI implementation
and are specific to the given resource type (see Section 2.5.1).

The tables below show the valid attribute nums for each type of resource:

type of mrapi resource t =MRAPI RSRC MEM

attribute_num: data type:

MRAPI RSRC MEM BASEADDR mrapi addr t
MRAPI RSRC MEM WORDSIZE mrapi uint t
MRAPI RSRC MEM NUMWORDS mrapi uint t

type of mrapi resource t =MRAPI RSRC CACHE

attribute_num: data type:

MRAPI RSRC_CACHE SIZE mrapi uint t
MRAPI RSRC CACHE LINE SIZE mrapi uint t
MRAPI RSRC CACHE ASSOCIATIVITY mrapi uint t
MRAPI RSRC CACHE LEVEL mrapi uint t

type of mrapi resource t =MRAPI RSRC CPU

attribute_num: data type:

MRAPI RSRC CPU FREQUENCY mrapi uint t
MRAPI RSRC _CPU TYPE char*

MRAPI RSRC CPU ID mrapi uint t

RETURN VALUE
On success *status is setto MRAPI SUCCESS and the attribute value is filled in. On error,
*status is set to the appropriate error defined below and the attribute value is undefined. The
attribute identified by the attribute numis returned in the void* attribute parameter.

The Multicore Association November 15, 2010 Page 105 of 160

MRAPI| APl Specification V1.0

ERRORS
MRAPI ERR RSRC_INVALID Invalid resource
MRAPI ERR _ATTR NUM Unknown attribute number
MRAPI ERR ATTR SIZE Incorrect attribute size
MRAPI ERR PARAMETER Invalid attribute parameter.
MRAPI ERR NODE NOTINIT The calling node is not intialized.
NOTE
SEE ALSO

mrapi resources_get ()

The Multicore Association November 15, 2010 Page 106 of 160

MRAPI| APl Specification V1.0

3.6.3 MRAPI_DYNAMIC_ATTRIBUTE_START

NAME
mrapi dynamic attribute start

SYNOPSIS
#include <mrapi.h>

void mrapi dynamic_attribute start(
MRAPI IN mrapi resource t* resource,
MRAPI IN mrapi uint t attribute num,

MRAPI IN void (*rollover callback) (void),
MRAPI OUT mrapi_ status t* status

)7

DESCRIPTION
mrapi dynamic attribute start() setsthe system up to begin collection of the attribute’s
value over time. resource is a pointer to the given resource, attribute num is the number of
the attribute to start monitoring for that resource. Attribute numbers are specific to the given
resource type.
The rollover callback is an optional function pointer. If supplied the implementation will call
the function when the specified attribute value rolls over from its maximum value. If this callback is
not supplied the attribute will roll over silently.

If you call stop and then start again, the resource will start at its previous value. To reset it, call
mrapi dynamic attribute reset().

RETURN VALUE

On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR RSRC INVALID Invalid resource
MRAPI ERR ATTR NUM Invalid attribute number
MRAPI ERR RSRC NOTDYNAMIC The input attribute is static and not dynamic, and therefore
can’t be started.
MRAPI ERR_RSRC_STARTED The attribute is dynamic and has already been started
MRAPI _ERR_RSRC_COUNTER_INUSE | The counter is currently in use by another node.
MRAPI _ERR _NODE NOTINIT The calling node is not intialized.
NOTE
SEE ALSO

mrapi dynamic attribute stop(), Section2.11.4

The Multicore Association November 15, 2010 Page 107 of 160

MRAPI| APl Specification V1.0

3.6.4 MRAPI_DYNAMIC_ATTRIBUTE_RESET

NAME
mrapi dynamic attribute reset

SYNOPSIS
#include <mrapi.h>

void mrapi dynamic_attribute reset (
MRAPI IN mrapi resource_ t *resource,
MRAPI IN mrapi uint t attribute num,
MRAPI OUT mrapi status t* status

)

DESCRIPTION
mrapi dynamic attribute reset () resets the value of the collected dynamic attribute.
resource is the given resource, attribute num is the number of the attribute to reset. Attribute
numbers are specific to a given resource type.

RETURN VALUE
On success, *status is set to MRAPI SUCCESS. On error, *status is set to the appropriate error
defined below.

ERRORS
MRAPI ERR RSRC_ INVALID Invalid resource
MRAPI_ERR_ATTR_NUM Invalid attribute number

MRAPI ERR_RSRC_NOTDYNAMIC | The input attribute is static and not dynamic, and therefore
can't be reset.

MRAPI ERR NODE NOTINIT The calling node is not intialized.

NOTE

Some dynamic attributes do not have a defined reset value. In this case, calling
mrapi dynamic attribute reset () has no effect.

SEE ALSO
Section 2.5.1

The Multicore Association November 15, 2010 Page 108 of 160

MRAPI| APl Specification V1.0

3.6.5 MRAPI_DYNAMIC_ATTRIBUTE_STOP

NAME

mrapi dynamic attribute stop

SYNOPSIS
#include <mrapi.h>

void mrapi dynamic attribute stop(

MRAPI IN mrapi resource t* resource,

MRAPI IN mrapi uint t attribute num,
MRAPI OUT mrapi_ status t* status

)7

DESCRIPTION

mrapi dynamic_ attribute stop()

stops the system from collecting dynamic attribute values.

resource is the given resource, attribute num is the number of the attribute to stop monitoring.

Attribute numbers are specific to a given resource type. If you call stop and then start again, the
resource will start at its previous value. To reset it, call mrapi dynamic attribute reset ().

RETURN VALUE

On success, *status is setto MRAPI SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI ERR_RSRC INVALID

Invalid resource

MRAPI_ERR_ATTR NUM

Invalid attribute number

MRAPI ERR RSRC NOTDYNAMIC

The input attribute is static and not dynamic, and therefore
can’t be stopped.

MRAPI ERR RSRC NOTSTARTED

The attribute is dynamic and has not been started by the
calling node.

MRAPI ERR _NODE NOTINIT

The calling node is not intialized.

NOTE

SEE ALSO

mrapi dynamic attribute start()

The Multicore Association

November 15, 2010 Page 109 of 160

MRAPI| APl Specification V1.0

3.6.6 MRAPI_RESOURCE_REGISTER_CALLBACK

NAME
mrapi resource register callback

SYNOPSIS
#include <mrapi.h>

void mrapi resource register callback(
MRAPI IN mrapi event t event,
MRAPI IN unsigned int frequency,
MRAPI IN void (*callback function) (mrapi event t event),
MRAPI OUT mrapi status t* status
)

DESCRIPTION

mrapl register callback() registers an application-defined function to be called when a
specific system event occurs. The set of available events is implementation-defined. Some
implementations may choose not to define any events and thus not to support this functionality. The
frequency parameter is used to indicate the reporting frequency for which an event should trigger
the callback (frequency is specified in terms of number of event occurrences, e.g., callback on every
nth occurrence where n=frequency). An example usage of

mrapl register callback() could be for notification when the core experiences a power
management event so that the application can determine the cause (manual or automatic) and/or
the level (nap, sleep, or doze, etc.), and use this information to adjust resource usages.

RETURN VALUE

On success, the callback function () will be registered for the event, and *status is set to
MRAPI SUCCESS. On error, *status is set to the appropriate error defined below.

ERRORS
MRAPI ERR RSRC INVALID EVENT Invalid event
MRAPI ERR RSRC INVALID CALLBACK | Invalid callback function
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.
NOTE
SEE ALSO

The Multicore Association November 15, 2010 Page 110 of 160

MRAPI| APl Specification V1.0

3.67 MRAPI_RESOURCE_TREE_FREE

NAME

mrapi resource tree free

SYNOPSIS
#include <mrapi.h>

void mrapi resource tree free(
mrapi resource t* MRAPI IN* root,
MRAPI OUT mrapi status t* status
);

DESCRIPTION

mrapi resource tree free () frees the memory in aresource tree. root is the root of a
resource tree originally obtained from a call to mrapi resources get ().

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS and root will be set to MRAPI NULL. On error,

*status is set to the appropriate error defined below.

ERRORS
MRAPI ERR RSRC_INVALID TREE Invalid resource tree
MRAPI_ERR_RSRC_NOTOWNER The calling node is not the same node that originally
called mrapi resources get().
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.
NOTE

Subsequent usage of root will give undefined results.

SEE ALSO

mrapi resources_get ()

The Multicore Association November 15, 2010

Page 111 of 160

MRAPI| APl Specification V1.0

3.7 Convenience Functions

MRAPI supports a convenience function for displaying the status parameter.

The Multicore Association November 15, 2010 Page 112 of 160

MRAPI| APl Specification V1.0

3.7.1 MRAPI_DISPLAY_STATUS

NAME
mrapi display status

SYNOPSIS
#include <mrapi.h>

char* mrapi display status/(
MRAPI IN mrapi status t mrapi status,
MRAPI OUT char* status message,
MRAPI IN size t size

) i

DESCRIPTION
mrapi display status () formats the status parameter as a string by copying it into the user
supplied buffer: status message.

RETURN VALUE

MRAPI TRUE is returned on success, otherwise MRAPI FALSE is returned. If the status is an
unknown status, status_message will be set to UNKNOWN.

ERRORS

NONE DEFINED N/A

NOTE

SEE ALSO

The Multicore Association November 15, 2010 Page 113 of 160

MRAPI| APl Specification V1.0

4. FAQ

Q: Is a reference implementation available? What is the intended purpose of the reference
implementation?

A: A reference implementation is planned in the future. The current plan is to receive feedback on the
draft specification and make modifications based upon the feedback. When the specification is near
finalization, the MRAPI working group will announce the plans and schedule for such an
implementation. The reference implementation models the functionality of the specification and does not
intend to be a high-performance implementation.

Q: Can you elaborate on how hardware accelerators will interact with embedded processors using
MRAPI? An APl is a library of C/C++ functions, but it is not clear how an API can be used with a
hardware accelerator, which can be very application-specific.

A: The API can be implemented on top of a hardware accelerator. For example, an SoC may have

hardware acceleration for mutexes, in which case an MRAPI implementation could use that hardware
accelerator without the programmer needing to know how to interact with it directly.

Q: Does the API have test cases?
A: The API itself does not have test cases. However, as with the MCAPI example implementation which

is available from the Multicore Association, we would expect an MRAPI example implementation to
contain test cases.

Q: Do you have implementations of the API that can be tested by the reviewers?

A: We are hoping to publish an example implementation along with the spec.

Q: I assume MRAPI relies on a "local" resource manager. That is, MRAPI must store state, and so
needs a way to allocate state storage. Is this correct?

A: It is up to the MRAPI implementation as to how resources are managed. Our simple initial
implementation stores state in shared memory protected with a semaphore.

Q: | saw a statement that other solutions are too heavyweight because they target distributed systems.
Does it mean that your goal is not to target the distributed system? What happens if we have a multichip
multicore system? Isn't this the same as a distributed system?

A: MRAPI targets cores on a chip, and chips on a board. MRAPI is not intended to scale beyond that
scope.

The Multicore Association November 15, 2010 Page 114 of 160

MRAPI| APl Specification V1.0

Q: Is it possible to hide the differences between local and remote memory?

A: The working group has considered the possibility of allowing the promotion of local memory to remote
memory, and then allowing all memory accesses to occur through the API. This would effectively hide
the difference, but at a performance cost. For now, this is a deferred feature.

Q: In many hardware systems, transitions between low power (or no power) and fully working conditions
are extremely frequent. In such systems, some state-change callbacks will become a nightmare. How
are you planning to handle the situation?

A: If an application does not want to be disturbed by frequent callbacks, the application can periodically
poll MRAPI at a time of its own choosing. This is certainly possible with MRAPI.

Q: What is the idea of API asking for hardware accelerators if these accelerators are actually powered
off because of inactivity?

A: In such a scenario, the application would determine that there was no acceleration available and
would have to find an alternative means to perform its work, perhaps by executing code on the CPU.

Q: Are there any plans to include trigger APIs? For example, invoke callback when a particular resource
hits some pre-defined conditions or threshold?

A: Currently there are no threshold-related callbacks other than counter wrap-arounds. MRAPI may
consider this for a future version.

Q: Did you consider including Read Copy Update (RCU) locks?

A: The MRAPI working group did consider RCU locks. After discussion with some of the original
creators of the RCU code for Linux, we determined that, for now, there is not sufficient evidence that a
high-performance, user-level implementation of RCU was feasible. We intend to monitor developments
in this area because we are aware that it is an active area of research.

Q: These primitives are necessary, but seem to be insufficient. | would think that the goal of MRAPI
would include the ability to write a resource manager that any application using MRAPI could plug into.
That implies that at a minimum: resource enumerations should be standardized, or a mechanism for
self-describing enumerations be created.

A: MRAPI is intended to provide some of the primitives that could be used for creating a higher-level
resource manager. However, it is also intended to be useful for application-level programmers to write
multicore code, and for this reason it was kept minimal and orthogonal to other Multicore Association
APIs. The working group believes that a full-featured resource manager would require all of the
Multicore Association APIs, e.g., MCAPI, MRAPI, and MTAPI.

The Multicore Association November 15, 2010 Page 115 of 160

MRAPI| APl Specification V1.0

Q: Are any companies currently incorporating or have plans to incorporate MRAPI in their products. If
S0, can you name the products?

A: At this time, there have been no public announcements. There is at least one university research

project that is looking at MRAPI for heterogeneous multicore computing. We expect more activities to
emerge after the specification is officially released.

Q: Is MRAPI planned to be processor-agnostic?

A: Yes, that is the plan.

Q: Is MRAPI dependent on any other resource management standards and/or approaches?

A: No, there should be no such dependencies in MRAPI.

The Multicore Association November 15, 2010 Page 116 of 160

MRAPI| APl Specification V1.0

5. Use Cases

51 Simple Example of Creating Shared Memory Using Metadata

This use case illustrates how a user would control which shared physical memory is allocated by
walking a filtered resource tree and selecting a particular memory resource. The default is to allow the
system to control where shared memory is allocated from.

mrapi status_t status;

mrapi resource t* mem root;

mrapi shmem hndl t shmem hndl;

mrapi shmem attributes t shmem attributes;
int 1i;

mrapi_addr t addr;

// get the metadata resource tree (filtered for memory only)
mem root = mrapi resources get (MRAPI RSRC MEM, &status) ;
if (status != MRAPI SUCCESS) { ERR(“Unable to get resource tree”);}

// find the desired memory in the metadata resource tree
for (i = 0; 1 < mem root->child count; i++) {
mrapi resource get attribute (
mem root->childrenl[i],
MRAPI RSRC_MEM BASEADDR,
&addr,
sizeof (mrapi addr t),
&status) ;
if (status != MRAPI SUCCESS) { ERR (“Unable to get resource attr”);}

if (addr == Oxfffff000) {
// we’ve found the resource for the region we want to use

// set up the shared memory resource attribute with the metadata
mrapi shmem init attributes (&shmem attributes, &status);
if (status != MRAPI SUCCESS) { ERR (“Unable to init shmem attrs”);}

mrapi shmem set attribute (&shmem attributes,
MRAPI SHMEM RESOURCE,
mem root->children[i],
sizeof (mrapi resource t),
&status) ;
if (status != MRAPI SUCCESS) { ERR(“Unable to set shmem attrs”);}

// create the shared memory

shmem hndl = mrapi shmem create (MRAPI SHMEM ID ANY,
1024 /* size */,
NULL /*share with all nodes*/,
0 /*nodes size*/,

The Multicore Association November 15, 2010 Page 117 of 160

MRAPI| APl Specification V1.0

&shmem attributes,
sizeof (shmem attributes),
&status) ;

if (status != MRAPI SUCCESS) { ERR(“Unable to create shmem”);}
break;

5.2 Automotive Use Case

5.2.1 Characteristics
52.1.1 Sensors

Tens to hundreds of sensor inputs read on a periodic basis. Each sensor is read and its data are
processed by a scheduled task.

5.2.1.2 Control Task
A control task takes sensor values and computes values to apply to various actuators in the engine.
5.2.1.3 Lost Data

Lost data is not desirable, but old data quickly becomes irrelevant; the most-recent sample is most
important.

5.2.14 Types of Tasks
Consists of both control and signal processing, especially FFT.
5.2.15 Load Balance

The load balance changes as engine speed increases. The frequency at which the control task must be
run is determined by the RPM of the engine.

5.2.1.6 Message Size and Frequency

Messages are expected to be small and message frequency is high.

5.2.1.7 Synchronization

Synchronization between control and data tasks should be minimal to avoid negative impacts on latency

of the control task. If shared memory is used there can be multiple tasks writing and one reader.
Deadlock will not occur, but old data may be used if an update is not ready.

5.2.1.8 Shared Memory

Typical engine controllers incorporate on-chip flash and SRAM and can access off-chip memory as well.
Shared memory regions must be in the SRAM for maximum performance. Because a small OS or no
OS is involved, it is typical for logical mappings of addresses to be avoided. If an MMU is involved, it will
typically be programmed for logical == physical and with few large page entries versus lots of small
page entries. Maintenance of a page table and use of page-replacement algorithms should be avoided.

The Multicore Association November 15, 2010 Page 118 of 160

MRAPI| APl Specification V1.0

5.2.2 Key Functionality Requirements

5.2.2.1 Control Task

There must be a control task collecting all data and calculating updates. This task must update engine
parameters continuously. Updates to engine parameters must occur when the engine crankshatft is at a
particular angle, so the faster the engine is running, the more frequently this task must run.

5222 Angle Task

There must be a data task to monitor engine RPM and schedule the control task.

5.2.2.3 Data Tasks

There must be a set of tens to hundreds of tasks to poll sensors. The task must communicate this data
to the control task.

5.2.3 Context and Constraints

5.2.3.1 Operating System

Often there is no commercial operating system involved, although the notion of time-critical tasks and
task scheduling must be supported by some type of executive. However, this may be changing.
Possible candidates are OSEK, or other RTOS.

5.2.3.2 Polling and Interrupts

Sensor inputs may be polled and/or associated with interrupts.

5.2.3.3 Reliability

Sensors are assumed to be reliable. Interconnect is assumed to be reliable. Task completion within
scheduled deadline is assumed to be reliable for the control task, and less reliable for the data tasks.

5.2.4 Metrics

5.24.1 Latency of Control Task

Latency of the control task depends on engine RPM. At 1800 RPM the task must complete every
33.33ms, and at 9000 RPM the task must complete every 6.667ms.

5.2.4.2 Number of Dropped Sensor Readings

Ideally zero.

5.2.4.3 Latencies of Data Tasks

Ideally the sum of the latencies plus message send/receive times should be less than the latency of the
control loop, given the current engine RPM. In general, individual tasks are expected to complete in
times varying from 1ms up to 1600ms, depending on the nature of the sensor and the type of
processing required for its data.

5.2.4.4 Code Size

Automotive customers expect their code to fit into on-chip SRAM. The current generation of chips often
has 1Mb of SRAM, with 2Mb on the near horizon.

The Multicore Association November 15, 2010 Page 119 of 160

MRAPI| APl Specification V1.0

Possible Factorings

1 general-purpose core for control, 1 general-purpose core for data

1 general-purpose core for control/data, dedicated SIMD core for signal processing, other special-
purpose cores for remainder of data processing

1 core per cylinder, or 1 core per group of cylinders

MRAPI Requirements Implications
Fast locks supporting multiple writers and a single reader are required. Maximum lock rate <<
6ms on 800mhz core would be typical.
Locks must work transparently whether they are unicore or multicore.
Ability to select shared-memory region based on attribute: SRAM.
Ability to select shared-memory region based on attribute: logical == physical.

Ability to select shared memory region based on attribute: no MMU overhead (other than initial
page-entry set up if required).

Mental Models

AtoD » Carburator
CPU
A Dto A Engine Knock?
Clean Burn?
) 4
Hardware
Memory < » Accelerator

(TPU)

Figure 3. Example Hardware

The Multicore Association November 15, 2010 Page 120 of 160

MRAPI| APl Specification V1.0

for (.) {
wait TPU task msg
Software Configuration read shared memory
for (signal processing task) {
test signal msg
if (msg) recv msg

Initialize .| Control Task }
L compute new carburator params
(CPU) (CPU) update carburator

‘ }

main (..) { for (..) {
create shared memory read sensor
create msg chans (connections) I TPU Ta-Sk compute RPM
create/schedule tasks, passing < (rF)LJ) update shared memory
parms such as chans, mem regions send msg to control task
wait forever }
}
for (.) {
Signal Processing read senser
» process signa
TaSkS (CPU) send msg to control task

Hardware Configuration

AtoD > Carburator
»
Ll
CPU
»
Ll
A Dto A (Engine Knock?
Clean Burn?
\ 4
P - Hardware
Memory Accelerator
g (TPU)

Figure 4. A Possible Mapping

The Multicore Association November 15, 2010 Page 121 of 160

MRAPI| APl Specification V1.0

Software Configuration

Initialize

Control Task

(CPUL)
main (..) {

create shared memory
create msg chans (connections)
create/schedule tasks, passing

parms such as chans, mem regions
wait forever

for (.) {

wait TPU task msg

read shared memory

for (signal processing task) {

wait for signal msg

}

compute new carburator params
update carburator

> (CPU1)
o TPU Task
> (TPU)

for (.) {
read sensor
compute RPM
update shared memory
send msg to control task

Signal Processing

Tasks (CPU2)

for (.) {
read sensor
process signal
send msg to control task

Hardware Configuration

Engine Knock?
Clean Burn?

>» CPU1 > Ato D J» Carburator

» CPU2 » DtoA (@
Hardware

>» Memory <> Act(:_lgll:t’elza)ltor

Figure 5. Alternative Hardware

The Multicore Association

November 15, 2010

Page 122 of 160

MRAPI| APl Specification V1.0

5.2.8 MRAPI Pseudocode

5.2.8.1 Initial Mapping

[1777777777777777777777777777777777777777
// The control task
[1777777777777777777777777777777777777777
void Control Task(void) {

mrapi shmem hndl t sMem; /* handle to the shmem */

mrapi mutex hndl t sMem mutex;

char* sPtr;

mrapi key t lock key;

uint8 t tFlag;

mcapi_endpoint t tpu rmem endpt;

mcapi endpoint t sig endpt, sig rmem endpt;

mcapi endpoint t tmp endpt;

mcapi pktchan recv_hndl t sig chan;

struct SIG _DATA sDat;

size t tSize;

mcapi request t rl, r2;

mcapi status t err;

mrapi status_t mrapi status;

mrapi parameters t parms;
mrapi info t version;

// init the system
mcapi initialize (CNTRL_NODE, &err);
CHECK_ STATUS (err) ;

mrapi initialize (AUTO USE CASE DOMAIN ID, CNTRL NODE,
parms, &version, &mrapi status);
CHECK_STATUS (mrapi status);

// first create local endpoints

sig endpt = mcapi create endpoint (CNTRL PORT SIG,
&err) ;

CHECK STATUS (err) ;

// now we get two rmem endpoints

mcapi get endpoint i (TPU NODE, TPU PORT CNTRL,
&tpu rmem endpt, &rl, &err);

CHECK_ STATUS (err) ;

mcapi get endpoint (SIG NODE, SIG PORT CNTRL,
&sig_rmem endpt, &r2, é&err);
CHECK STATUS (err) ;

// wait on the endpoints
while (! ((mcapi test (&rl,NULL, &err)) &&
(mcapi_test (&r2,NULL, &err))) {
// KEEP WAITING
}

// create our mutex for the shared memory region
sMem mutex =
mrapi mutex create (SMEM MUTEX ID, MRAPI NULL,
&mrapi status);
CHECK STATUS (mrapi status);

// allocate shmem and send the handle to TPU task

The Multicore Association November 15, 2010 Page 123 of 160

MRAPI| APl Specification V1.0

sMem = mrapi shmem create (SHMEM ID, SHMEM SIZE,
MRAPI NULL, 0, MRAPI NULL,
0, &mrapi status);
CHECK_STATUS (mrapi_status);

sPtr = (void*) mrapi shmem attach (sMem, &mrapi status);
CHECK_STATUS (mrapi_ status);

tmp_endpt = mcapi create anonymous_endpoint (&err);
CHECK STATUS (err) ;

// send the shmem handle

mcapi msg send(tmp_endpt, tpu rmem endpt, sMem,
sizeof (sMem), &err);

CHECK STATUS (err) ;

// connect the channels

mcapi connect pktchan i(sig_endpt, sig rmem endpt,
&rl, &err);

CHECK STATUS (err) ;

// walit on the connection

while (!mcapi test (&rl,NULL, &err)) {
// KEEP WAITING

}

// now open the channels

mcapi open pktchan recv_i(&sig chan, sig endpt,
&rl, &err);

CHECK STATUS (err) ;

// wait on the channels

while (! (mcapi test (&rl,NULL, &err)) {
// KEEP WAITING

}

// now ALL of the bootstrapping is finished
// we move to the processing phase below

while (1) {
// NOTE - get an MRAPI lock
mrapi mutex lock (sMem mutex, &lock key, O,
&mrapi status);
CHECK_STATUS (mrapi status);

// read the shared memory

if (sPtr[0] != 0) {
// process the shared memory data
} else {
// PANIC -- error with the shared mem

}

// NOTE - release the MRAPI lock

mrapi mutex unlock (sMem mutex, &lock key,
&mrapi status);

CHECK_STATUS (mrapi_status);

// now get data from the signal processing task
// would be a loop if there were multiple sig tasks
mcapi pktchan recv(sig chan, (void **) &sDat,

The Multicore Association November 15, 2010 Page 124 of 160

MRAPI| APl Specification V1.0

&tSize, &err);
CHECK_STATUS (err) ;

// Compute new carb params & update carb

The Multicore Association November 15, 2010 Page 125 of 160

MRAPI| APl Specification V1.0

N N N
// The TPU task
R N N
void TPU Task() {

mrapi shmem hndl t sMem; /* handle to shmem */

mrapi mutex hndl t sMem mutex;

char* sPtr;

mrapi key t lock key;

size t msgSize;

mcapi_endpoint t cntrl endpt;

mcapi request t rl;

mcapi status t err;

// init the system
mcapi initialize (TPU NODE, &err);
CHECK STATUS (err) ;

mrapi initialize (AUTO USE CASE DOMAIN ID, TPU NODE,
MRAPI NULL, MRAPI_NULL,&mrapi_status);
CHECK_STATUS (mrapi_ status);

cntrl endpt =
mcapi create endpoint (TPU _PORT CNTRL, &err);
CHECK_ STATUS (err) ;

// now get the shared mem ptr

mcapi msg recv(cntrl endpt, &sMem, sizeof (sMem),
&msgSize, &err);

CHECK STATUS (err) ;

sPtr = (void*) mrap