
 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 1 of 160

Multicore Resource API

(MRAPI) Specification

V1.0

Document ID: MRAPI API Specification

Document Version: 1.0

Status: Release

Distribution: General

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 2 of 160

Copyright © 2010 The Multicore Association, Inc.

All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission from The Multicore Association, Inc.

All copyright, confidential information, patents, design rights and all other intellectual property rights of
whatsoever nature contained herein are and shall remain the sole and exclusive property of Multicore
Association. The information furnished herein is believed to be accurate and reliable. However, no
responsibility is assumed by The Multicore Association, Inc. for its use, or for any infringements of
patents or other rights of third parties resulting from its use.

The Multicore Association, Inc. name and The Multicore Association, Inc. logo are trademarks or
registered trademarks of The Multicore Association, Inc. All other trademarks are the property of their
respective owners.

The Multicore Association, Inc.

PO Box 4854

El Dorado Hills, CA 95762

530-672-9113

www.multicore-association.org

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 3 of 160

Table of Contents

Preface ... 7

Definitions .. 7
Related Documents ... 8

1. Introduction .. 9

1.1 Overview .. 9
1.1.1 MRAPI Goals .. 9
1.1.2 The MRAPI Feature Set ... 10
1.1.3 Existing Standards and APIs .. 10

1.1.3.1 POSIX® Shared Memory .. 10
1.1.3.2 POSIX Mutexes and Semaphores ... 10
1.1.3.3 Performance API (PAPI) .. 13
1.1.3.4 IBM DaCS... 13
1.1.3.5 GASNet Specification ... 13
1.1.3.6 ARMCI Library .. 14

1.2 History .. 14

2. MRAPI Concepts .. 15

2.1 Domain ... 15
2.2 Nodes ... 15
2.3 Synchronization Primitives ... 15

2.3.1 Mutexes .. 16
2.3.2 Semaphores ... 16
2.3.3 Reader/Writer Locks ... 16

2.4 Memory .. 16
2.4.1 Shared Memory .. 16
2.4.2 Remote Memory ... 17

2.5 Metadata .. 19
2.5.1 Metadata Resource Data Structure .. 19

2.6 Attributes .. 19
2.7 Sharing Across Domains .. 20
2.8 Waiting for Non-Blocking Operations ... 20
2.9 Error Handling Philosophy ... 20
2.10 Timeout and Cancellation Philosophy .. 21
2.11 Data Types ... 21

2.11.1 mrapi_domain_t .. 21
2.11.2 mrapi_node_t .. 21
2.11.3 Initialization Parameters and Information ... 21

2.11.3.1 mrapi_param_t ... 21
2.11.3.2 mrapi_info_t .. 22

2.11.4 mrapi_resource_t .. 22
2.11.5 mrapi_mutex_hndl_t ... 23
2.11.6 mrapi_key_t .. 23
2.11.7 mrapi_sem_hndl_t .. 23
2.11.8 mrapi_rwl_hndl_t .. 24
2.11.9 mrapi_rwl_mode_t .. 24
2.11.10 mrapi_shmem_hndl_t ... 24
2.11.11 mrapi_rmem_hndl_t .. 24
2.11.12 mrapi_rmem_atype_t .. 24
2.11.13 Identifiers .. 24
2.11.14 Scalars .. 25
2.11.15 mrapi_request_t .. 25
2.11.16 mrapi_status_t .. 25
2.11.17 mrapi_timeout_t .. 25
2.11.18 Other MRAPI Data Types ... 26

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 4 of 160

2.12 MRAPI Compatibility with MCAPI .. 26
2.13 Application Portability Concerns .. 26
2.14 Implementation Concerns .. 26

2.14.1 Thread-Safe Implementations .. 26
2.15 Potential Future Extensions ... 26

2.15.1 RCU (read, copy, update) locks ... 27
2.15.2 Non-Owner Remote Memory Allocation ... 27
2.15.3 Application-Level Metadata .. 27
2.15.4 Locking of Resource Lists .. 27
2.15.5 Debug, Statistics and Status functions ... 27
2.15.6 Multiple Semaphore Lock Requests ... 27
2.15.7 Node Lists for Remote Memory Creation Routines .. 27

3. MRAPI API ... 28

3.1 Conventions ... 28
3.2 General ... 29

3.2.1 MRAPI_INITIALIZE... 30
3.2.2 MRAPI_NODE_INIT_ATTRIBUTES... 31
3.2.3 MRAPI_NODE_SET_ATTRIBUTE ... 32
3.2.4 MRAPI_NODE_GET_ATTRIBUTE .. 33
3.2.5 MRAPI_FINALIZE... 34
3.2.6 MRAPI_DOMAIN_ID_GET ... 35
3.2.7 MRAPI_NODE_ID_GET ... 36

3.3 Synchronization Primitives ... 37
3.3.1 Mutexes .. 38

3.3.1.1 MRAPI_MUTEX_CREATE ... 39
3.3.1.2 MRAPI_MUTEX_INIT_ATTRIBUTES .. 40
3.3.1.3 MRAPI_MUTEX_SET_ATTRIBUTE .. 41
3.3.1.4 MRAPI_MUTEX_GET_ATTRIBUTE .. 42
3.3.1.5 MRAPI_MUTEX_GET .. 43
3.3.1.6 MRAPI_MUTEX_DELETE ... 44
3.3.1.7 MRAPI_MUTEX_LOCK .. 45
3.3.1.8 MRAPI_MUTEX_TRYLOCK .. 46
3.3.1.9 MRAPI_MUTEX_UNLOCK .. 47

3.3.2 Semaphores ... 48
3.3.2.1 MRAPI_SEM_CREATE .. 49
3.3.2.2 MRAPI_SEM_INIT_ATTRIBUTES ... 50
3.3.2.3 MRAPI_SEM_SET_ATTRIBUTE ... 51
3.3.2.4 MRAPI_SEM_GET_ATTRIBUTE ... 52
3.3.2.5 MRAPI_SEM_GET ... 53
3.3.2.6 MRAPI_SEM_DELETE .. 54
3.3.2.7 MRAPI_SEM_LOCK .. 55
3.3.2.8 MRAPI_SEM_TRYLOCK ... 56
3.3.2.9 MRAPI_SEM_UNLOCK ... 57

3.3.3 Reader/Writer Locks ... 58
3.3.3.1 MRAPI_RWL_CREATE ... 59
3.3.3.2 MRAPI_RWL_INIT_ATTRIBUTES ... 60
3.3.3.3 MRAPI_RWL_SET_ATTRIBUTE ... 61
3.3.3.4 MRAPI_RWL_GET_ATTRIBUTE... 62
3.3.3.5 MRAPI_RWL_GET ... 63
3.3.3.6 MRAPI_RWL_DELETE .. 64
3.3.3.7 MRAPI_RWL_LOCK .. 65
3.3.3.8 MRAPI_RWL_TRYLOCK ... 66
3.3.3.9 MRAPI_RWL_UNLOCK ... 67

3.4 Memory .. 68
3.4.1 Shared Memory .. 69

3.4.1.1 MRAPI SHMEM_CREATE ... 70
3.4.1.2 MRAPI_SHMEM_INIT_ATTRIBUTES ... 71
3.4.1.3 MRAPI_SHMEM_SET_ATTRIBUTE ... 72
3.4.1.4 MRAPI_SHMEM_GET_ATTRIBUTE ... 74

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 5 of 160

3.4.1.5 MRAPI_SHMEM_GET ... 75
3.4.1.6 MRAPI_SHMEM_ATTACH .. 76
3.4.1.7 MRAPI_SHMEM_DETACH .. 77
3.4.1.8 MRAPI_SHMEM_DELETE ... 78

3.4.2 Remote Memory ... 79
3.4.2.1 MRAPI_RMEM_CREATE .. 80
3.4.2.2 MRAPI_RMEM_INIT_ATTRIBUTES .. 82
3.4.2.3 MRAPI_RMEM_SET_ATTRIBUTE .. 83
3.4.2.4 MRAPI_RMEM_GET_ATTRIBUTE ... 84
3.4.2.5 MRAPI_RMEM_GET .. 85
3.4.2.6 MRAPI_RMEM_ATTACH ... 86
3.4.2.7 MRAPI_RMEM_DETACH .. 87
3.4.2.8 MRAPI_RMEM_DELETE ... 88
3.4.2.9 MRAPI_RMEM_READ ... 89
3.4.2.10 MRAPI_RMEM_READ_I .. 91
3.4.2.11 MRAPI_RMEM_WRITE ... 93
3.4.2.12 MRAPI_RMEM_WRITE_I .. 94
3.4.2.13 MRAPI_RMEM_FLUSH ... 96
3.4.2.14 MRAPI_RMEM_SYNC ... 97

3.5 Non-Blocking Operations ... 98
3.5.1 MRAPI_TEST ... 99
3.5.2 MRAPI_WAIT ... 100
3.5.3 MRAPI_WAIT_ANY .. 101
3.5.4 MRAPI_CANCEL .. 102

3.6 Metadata .. 103
3.6.1 MRAPI_RESOURCES_GET .. 104
3.6.2 MRAPI_RESOURCE_GET_ATTRIBUTE .. 105
3.6.3 MRAPI_DYNAMIC_ATTRIBUTE_START .. 107
3.6.4 MRAPI_DYNAMIC_ATTRIBUTE_RESET ... 108
3.6.5 MRAPI_DYNAMIC_ATTRIBUTE_STOP .. 109
3.6.6 MRAPI_RESOURCE_REGISTER_CALLBACK .. 110
3.6.7 MRAPI_RESOURCE_TREE_FREE... 111

3.7 Convenience Functions .. 112
3.7.1 MRAPI_DISPLAY_STATUS ... 113

4. FAQ .. 114

5. Use Cases ... 117

5.1 Simple Example of Creating Shared Memory Using Metadata ... 117
5.2 Automotive Use Case... 118

5.2.1 Characteristics .. 118
5.2.1.1 Sensors .. 118
5.2.1.2 Control Task ... 118
5.2.1.3 Lost Data .. 118
5.2.1.4 Types of Tasks ... 118
5.2.1.5 Load Balance ... 118
5.2.1.6 Message Size and Frequency .. 118
5.2.1.7 Synchronization .. 118
5.2.1.8 Shared Memory .. 118

5.2.2 Key Functionality Requirements ... 119
5.2.2.1 Control Task ... 119
5.2.2.2 Angle Task.. 119
5.2.2.3 Data Tasks ... 119

5.2.3 Context and Constraints ... 119
5.2.3.1 Operating System ... 119
5.2.3.2 Polling and Interrupts ... 119
5.2.3.3 Reliability .. 119

5.2.4 Metrics .. 119
5.2.4.1 Latency of Control Task ... 119
5.2.4.2 Number of Dropped Sensor Readings ... 119

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 6 of 160

5.2.4.3 Latencies of Data Tasks ... 119
5.2.4.4 Code Size ... 119

5.2.5 Possible Factorings .. 120
5.2.6 MRAPI Requirements Implications ... 120
5.2.7 Mental Models .. 120
5.2.8 MRAPI Pseudocode ... 123

5.2.8.1 Initial Mapping .. 123
5.2.8.2 Changes Required to Port to New Multicore Devices 128

5.3 Remote Memory Use Cases .. 128
5.3.1 Remote Memory Use case 1 .. 128
5.3.2 Remote Memory Use Case 2 ... 134

5.4 Synchronization Use Case ... 138
5.5 Networking Use Case... 138
5.6 Metadata Use Cases .. 141

5.6.1 Dynamic Attribute Example .. 141
5.6.2 mrapi_resource_get() Examples .. 142

6. Appendix A: Acknowledgements ... 146

7. Appendix B: Header Files ... 147

7.1 mca.h ... 147
7.2 mrapi.h .. 148

8. Appendix C: MRAPI License Agreement ... 158

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 7 of 160

Preface

This document is intended to assist software developers who are either implementing resource
management functions using MRAPI or writing applications that use MRAPI.

MRAPI was developed under the guidance of The Multicore Association (MCA) with participation by
many of the MCA member companies. This MRAPI specification fits within the roadmap defined by the
MCA. The first component of that roadmap was the Multicore Communications API (MCAPI). MRAPI
and MCAPI share many concepts, constructs, and goals.

Definitions

AMP: Asymmetric multiprocessing, in which two or more processing cores having the same or different
architecture may be running the same or different operating systems (or no OS at all).

API: Application programming interface.

Blocking: A blocking function does not return until the function has completed or resulted in an error. A
thread-suspension mechanism is required for blocking calls.

Domain: An implementation of MRAPI includes one or more domains, each with one or more nodes.
The concept of domains is used consistently for all Multicore Associations APIs. A domain is
comparable to a subnet in a network.

Handle: An abstract reference by one node to an object managed by another node. Unlike a pointer, a
handle does not contain a literal address.

MCA: The Multicore Association.

MCAPI: Multicore Communications API Specification, defined by The Multicore Association.

MRAPI: Multicore Resource API Specification, defined by The Multicore Association.

MTAPI: Multicore Task API Specification, defined by The Multicore Association.

Node: An independent thread of control. It could be a process, thread, instance of an operating system,
hardware accelerator, processor core, or other entity with an independent program counter. Each node
can belong to only one domain. The concept of nodes applies consistently to all Multicore Associations
APIs.

Non-Blocking: A non-blocking function returns immediately, but the requested transaction completes in
a non-blocking manner. Remote memory is the only resource that supports non-blocking operations,
and the only non-blocking MRAPI calls are mrapi_rmem_read_i() and mrapi_rmem_write_i().

POSIX: Portable Operating System Interface, an API for Unix specified by the IEEE.

Resource: A processing core or chip, hardware accelerator, memory region, or I/O.

Remote Memory: Memory that cannot be accessed using standard load and store operations. For
example, host memory is remote to a GPU core,

SoC: System-on-chip.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 8 of 160

SMP: Symmetric multiprocessing, in which two or more identical processing cores are connected to a
shared main memory and are controlled by a single OS instance.

Timely: An operation is timely if it returns without having to block on any inter-processor communication
(IPC) to any remote nodes.

Related Documents

• Multicore Communications API (MCAPI) Specification, The Multicore Association.

• Multicore Task API (MTAPI) Specification, The Multicore Association (in progress).

• Multicore Programming Practices (MPP), The Multicore Association (in progress)..

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 9 of 160

1. Introduction

1.1 Overview

This Multicore Resource API (MRAPI) specification defines an API for application-level management of
shared resources in multicore embedded systems. It supports queries regarding static and dynamic
resources, and it supports system-level event notification such as power-savings states, device failures,
and hypervisor repartitioning. It allows coordinated concurrent access to system resources in situations
where (a) there are too few resources to dedicate to individual tasks or processors, and/or (b) the
runtime system does not provide a uniformly accessible mechanism for coordinating resource-sharing.

The managed resources include cores or chips, hardware accelerators, memory regions, and I/O.
MRAPI supports the ability to declare and allocate or destroy shared memory regions, and to identify
nodes which have access to each region. MRAPI also provides application-level synchronization
primitives for coordinating access to shared resources.

The multiple cores may be homogeneous or heterogeneous and located on a single chip or on multiple
chips in a circuit board. MRAPI is scalable and can support virtually any number of cores, each with a
different processing architecture and each running the same or a different operating system, or no OS
at all. As such, MRAPI is intended to provide source-code compatibility that allows applications to be
ported from one operating environment to another well into the future.

1.1.1 MRAPI Goals

MRAPI provides essential capabilities with which applications can cooperatively manage shared
resources in multicore systems. MRAPI runtimes are not required to provide secure enforcement of
sharing policies. MRAPI intentionally stops short of being a full-featured dynamic resource manager
capable of orchestrating a set of resources to satisfy constraints on performance, power, and quality of
service. MRAPI (in conjunction with other Multicore Association APIs) can serve as a valuable tool for
implementing applications, as well as for implementing such full-featured resource managers and other
types of layered services. For these reasons, the following set of goals were used to weigh each MRAPI
feature:

• Small application-layer API, suitable for cores on a chip and chips on a board.

• Easy to learn and use.

• Incorporates an essential feature set.

• Supports lightweight and high-performance implementations.

• Does not prevent use of complementary approaches.

• Allows silicon providers to optimize their hardware.

• Allows implementers to differentiate their offerings.

• Can run on top of an OS, hypervisor, or bare metal.

• Can co-exist with hardware acceleration.

• Supports hardware implementations of the API.

• Does not require homogeneous cores, operating system, or memory architecture.

• Supports source-code portability.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 10 of 160

1.1.2 The MRAPI Feature Set

Synchronization Primitives (Section 3.3):

• Mutexes: Binary primitives that may be provided by shared memory, a distributed runtime, or
other means.

• Semaphores: Counting primitives that provide more capability than mutexes, although at perhaps
a slight performance penalty.

• Reader and Writer Locks: More advanced primitives that give the ability to support multiple
readers concurrently while allowing only a single writer.

Memory Primitives (Section 3.4):

• Shared Memory: Allows an application to allocate and manage shared memory regions where
there is physical shared memory to support it, including special features which provide support for
requesting memory with specific attributes, and support for allocation based on a set of sharing
entities.

• Remote Memory: Allows an application to manage buffers that are shared but not implemented
on top of physical shared memory; transport may be via chip-specific methods such as DMA
transfers, Serial RapidIO (SRIO), or software cache. Remote memory primitives also provide
random access, scatter/gather, and hooks for software managed coherency.

Metadata Primitives (Section 3.6):

• These provide access to hardware information. They are not intended to be a facility for an
application to create and manage its own metadata. This additional functionality could be a
layered service or a future extension.

1.1.3 Existing Standards and APIs

The MRAPI working group chose to address specific areas of functionality related to the following
existing standards.

1.1.3.1 POSIX® Shared Memory

Shared memory is used to allow access to the same data by multiple threads of execution, which may
be on the same processor or on multiple processors, thereby avoiding copying of the data. The Portable
Operating System Interface (POSIX) standard provides a standard API for using shared memory,
including allocation, deletion, mapping and managing the shared memory. POSIX shared memory
generally provides this functionality within the scope of one operating system, across one or more
processor cores. This functionality is considered essential for multicore programming, but is only one
feature that MRAPI is intended to provide. The MRAPI working group added two additional features to a
shared memory API: (1) the ability for programmers to specify attributes of the memory to be shared (for
example on-chip SRAM versus off-chip DDR), and (2) the ability for programmers to specify which
elements of a multicore system would be seeking access to the shared memory segment such that
MRAPI could support shared memory for parts of multicore systems where physical shared memory is
non-uniformly accessible.

1.1.3.2 POSIX Mutexes and Semaphores

The POSIX standard provides two forms of semaphores: mutexes (binary semaphores), and
semaphores (counting semaphores).

Given the goals of MRAPI, the MRAPI working group considered POSIX mutexes and semaphores
(IEEE Standard 1003.1b) as having relevant functionality. However, the working group determined that
condition variables and signaling should be considered within the scope of the future Multicore Task API
(MTAPI) working group rather than the MRAPI working group. The rationale for this decision is that in
order to properly implement condition variables and signaling one would require the ability to manage

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 11 of 160

threads or processes, and this is what MTAPI will provide. Therefore the functionality should be
considered on the Multicore Association roadmap, but deferred until MTAPI becomes available.

1.1.3.2.1 POSIX Mutexes

POSIX mutexes are declared as part of the POSIX threads (pthreads) package. These mutexes are
only guaranteed to work within a single process. It is possible on some systems to declare mutexes as
global by setting the process-shared attribute on the mutex, but implementations are not required to
support this.

The following mutex types are defined within the POSIX standard:

• PTHREAD_MUTEX_NORMAL: This type of mutex does not detect deadlock. A thread attempting
to relock this mutex without first unlocking it shall deadlock. Attempting to unlock a mutex locked
by a different thread results in undefined behavior. Attempting to unlock an unlocked mutex
results in undefined behavior.

• PTHREAD_MUTEX_ERRORCHECK: This type of mutex provides error checking. A thread
attempting to relock this mutex without first unlocking it shall return with an error. A thread
attempting to unlock a mutex which another thread has locked shall return with an error. A thread
attempting to unlock an unlocked mutex shall return with an error.

• PTHREAD_MUTEX_RECURSIVE: A thread attempting to relock this mutex without first
unlocking it shall succeed in locking the mutex. The relocking deadlock which can occur with
mutexes of type PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple
locks of this mutex shall require the same number of unlocks to release the mutex before another
thread can acquire the mutex. A thread attempting to unlock a mutex which another thread has
locked shall return with an error. A thread attempting to unlock an unlocked mutex shall return
with an error.

• PTHREAD_MUTEX_DEFAULT: Attempting to recursively lock this mutex results in undefined
behavior. Attempting to unlock this mutex if it was not locked by the calling thread results in
undefined behavior. Attempting to unlock this mutex if it is not locked results in undefined
behavior. An implementation may map this mutex to one of the other mutex types.

1.1.3.2.2 Mutex Analysis

After reviewing the POSIX pthreads API and semantics, the working group came to the following
conclusions:

• POSIX mutexes cannot always be shared between processes. It depends on the implementation.

• Forking a process that has POSIX mutexes has pitfalls when mutexes are process-shared. For
example, the new child could inherit held locks from threads in the parent that do not exist in the
child because fork always creates a child with one thread.

• It is normally recommended that System V or POSIX.1b semaphores should be used for process-
to-process synchronization rather than pthreads mutexes, but this currently requires an SMP
operating system for multicore applications.

• Mutexes are useful for managing access to a single resource, and they are simpler to use than
System V and POSIX semaphores.

• Priorities and associated protocols (PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT,
PTHREAD_PRIO_PROTECT) are probably not something that could be guaranteed by MRAPI
until MTAPI is created. The MRAPI group chose to defer considering this feature of POSIX. This
currently puts the burden of dealing with priority inversion on the applications programmer.

• The types attribute for error-checking is powerful and useful and is included in MRAPI.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 12 of 160

For MRAPI, it was decided to cover a subset of POSIX mutex functionality along with the following new
requirements:

• Functionality equivalent to: pthread_mutex_init, pthread_mutex_destroy,

pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock.

• Mutex attributes for reporting basic deadlock detection.

• The ability to manage mutex attributes in a way that is consistent with MCAPI.

• Non-blocking operations in a way that is consistent with MCAPI.

• The default is for the mutex to be visible across processes and tasks.

• No requirement for shared memory or SMP OS.

• Priority inversion cannot be dealt with by MRAPI until the MTAPI specification is completed.

1.1.3.2.3 POSIX Semaphores

POSIX semaphores are declared as part of either the Realtime services or the XSI Interprocess
Communications services. XSI is the X/Open System Interface Extension, which is an extension to IEEE
1003.1b. The XSI interfaces are essentially the same as the System V IPC interfaces, which have been
widely supported across most Unix systems. Functionality marked XSI is also an extension to the ISO C
standard. Semaphores themselves are a POSIX option and are not required on all implementations.

1.1.3.2.4 POSIX Semaphores Analysis

After reviewing the semaphores API and semantics, the working group came to the following
conclusions:

• According to the POSIX Realtime API standard, semaphores may be process-private or process-
shared. There is substantial evidence that not all operating systems (notably Linux) support
process-shared Realtime semaphores, and the standard does not state that process-shared is
required.

• The Realtime API supports named and unnamed semaphores. Named and unnamed
semaphores have distinct operations, for example you must call sem_close to close a named

semaphore and sem_unlink to destroy a named semaphore, whereas sem_destroy is used to

close and destroy an un-named semaphore.

• The POSIX standard does not specify whether XSI functions can interoperate with the realtime
interprocess communication facilities defined in the Realtime API.

• The Realtime API is much simpler to use, whereas the XSI interface is more tied to the operating
system, although it is clearly defined to be flexible and fast. The Realtime API works on a single
sem_t identifier, whereas XSI uses arrays of semaphores and arrays of operations per API call.

• The sem_wait, sem_trywait, and sem_timedwait functions provide simple deadlock-

detection errors.

For MRAPI, the working group decided:

• Keep only the concept of named semaphores, and match semantics of MCAPI for endpoints.

• Ignore the XSI type interface (avoid requiring the API user to create and manage a set of
semaphores and semaphore operations per call).

• Provide non-blocking operations in a way that is consistent with MCAPI.

• The default is visible across processes, tasks, etc.

• Do not require shared memory or SMP OS.

• Priority inversion cannot be dealt with by MRAPI until the MTAPI specification is completed.

• Provide primitive deadlock reporting.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 13 of 160

1.1.3.3 Performance API (PAPI)

PAPI is a high-performance API that defines a common set of useful performance counters. PAPI
provides a high-level interface to start, stop, read, and register callbacks for counter overflow. PAPI
provides metadata about resources of a system, including resources such as number of cores, number
of counters, and shared libraries in use by an application.

PAPI also provides derived counters, such as IPC (Instructions Per Cycle), and timing and
measurement functions, such as wall-clock time consumed. It also provides mutexes, supports external
monitoring of counters associated with a process or thread, and management functions concerning
registering threads. PAPI has no memory management, has no concept of system partitioning, and the
metadata is limited with respect to the total resources in an SoC.

The MRAPI working group views the PAPI features for metadata and performance counters as being a
useful concept for the types of systems targeted by MRAPI.

1.1.3.4 IBM DaCS

IBM's Data Communication and Synchronization (DaCS) library provides a portable API for managing
distributed memory systems. It allows programmers to take advantage of the Cell processor's
Synergistic Processing Unit (SPU) DMA engines, while still being able to execute the program on
machines that do not have DMA engines. It provides functions for creating memory regions, registering
memory regions on multiple distributed processors, and copying data in and out of those memory
regions via DMA.

The MRAPI API shares several concepts with DaCS. In particular, both APIs provide functions for
creating memory regions, registering them with multiple processors, and performing DMA operations
between distributed shared memory and local memory. In order to minimize API complexity, MRAPI
does not provide some features included in DaCS. In particular, MRAPI avoids the need to specify
permissions on memory regions and limit DMA operations to linear or strided data arrays.

1.1.3.5 GASNet Specification

The Global-Address Space Networking (GASNet) specification is an API aimed at implementers of
global-address-space languages such as Unified Parallel C and Titanium. Unlike MRAPI, GASNet is
geared towards single-program multiple-data (SPMD) high-performance computing applications, rather
than embedded systems.

GASNet is divided into a small core API, and a richer extended API. The core API consists of functions
for job control, message passing (based on Active Messages), and atomicity control. The extended API
enriches this functionality with memory-to-memory data transfer functions, lower-level register-to-
memory operations, barrier synchronization, and threading support. The extended API has been
designed to be implementable using only the core API, and the GASNet designers provide a portable
reference implementation of the extended API in terms of the core API. However, high-performance
GASNet implementations are expected to efficiently implement as much of the extended API as
possible, exploiting platform-specific characteristics.

The GASNet memory-to-memory data transfer functionality shares similarities with remote memory
operations in MRAPI. Unlike MRAPI, GASNet does not support scatter/gather operations. On the other
hand, GASNet provides more sophisticated synchronization primitives for non-blocking operations, and
supports register-to-memory copies. The extended GASNet API includes barrier synchronization, which
is out of scope for MRAPI (as discussed in Section 1.1.3.2, coordination between processes is part of
the scope of MTAPI). Another significant distinction is that GASNet provides for both message passing
and remote memory operations. Message passing is not part of MRAPI, which is intended to co-exist
with a message passing API such as MCAPI.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 14 of 160

1.1.3.6 ARMCI Library

The Aggregate Remote Memory Copy Interface (ARMCI) library supports remote-memory access.
ARMCI has been designed to be general-purpose and portable, but it is aimed at library implementers
rather than application developers.

ARMCI shares similarities with remote memory operations in MRAPI. Unlike MRAPI, ARMCI provides
guarantees on the order of remote memory operations issued by a given process. ARMCI uses
generalized I/O vectors to support movement of multiple data segments between arbitrary remote and
local memory locations. This is more general than the form of remote memory operations supported by
MRAPI; the structure of MRAPI operations matches the ARMCI strided format, a special class of
generalized I/O vectors in which local and remote memory regions are regularly spaced. ARMCI
supports put and get and remote accumulate operations. This functionality is mainly useful in the high-
performance and scientific computing domains (accumulation is also featured in the MPI-2 one-sided
communication API). Accumulate operations are not present in MRAPI, which is not specifically geared
towards this application domain.

1.2 History

Multicore programming shares many concepts with parallel and distributed computing. Multiple
computing elements interact to accomplish a given task. In order to implement this, programmers need
basic capabilities for synchronizing the various threads of computation and coordinating accesses to
resources. These problems have been solved for traditional distributed systems using various forms of
middleware, and for multicore desktops and servers by facilities in operating systems enabled for
Symmetric Multiprocessing (SMP).

As multicore computing extends into embedded domains, many aspects of computing heterogeneity
emerge. This limits the ability of programmers to use middleware designed for distributed systems, or to
rely on an SMP operating system. These forms of heterogeneity include memory architectures,
instruction sets, general-purpose cores, special-purpose cores (or hardware acceleration), and even
operating systems. Yet multicore programmers still face the same programming challenges.
Semantically there is little difference between this computing context and the distributed or SMP
context. While it could be argued that existing standards for resource management would suffice in the
embedded context if re-implemented, two more concerns serve as barriers to this approach: (1) the
requirements of distributed systems and SMP systems demand overheads of footprint and execution
times that are unnecessary in closely-coupled and reliable embedded systems, and (2) embedded
systems have significant additional requirements not encompassed by existing standards.

MRAPI is designed to address these issues by embracing the proven features of existing standards,
while explicitly supporting the heterogeneous embedded multicore computing context—including
combinations of hardware or software heterogeneity; for example, different kinds of cores and
accelerators, or different operating systems.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 15 of 160

2. MRAPI Concepts

The major MRAPI concepts are covered in the following sections. The concepts and supporting data
types are defined to meet the goals stated in Section 1.1.1, including source code portability.

2.1 Domain

An MRAPI system is composed of one or more MRAPI domains. An MRAPI domain is a unique system
global entity. Each MRAPI domain comprises a set of MRAPI nodes (Section 2.2). An MRAPI node may
only belong to one MRAPI domain, while an MRAPI domain may contain one or more MRAPI nodes.
The concept of a domain is shared amongst Multicore Association APIs, and it must be consistent (i)
within any implementation that supports multiple APIs, and (ii) across implementations that require
interoperability.

2.2 Nodes

An MRAPI node is an independent thread of control, such as a process, thread, processor, hardware
accelerator, or instance of an operating system. A given MRAPI implementation specifies what kind of
thing constitutes a node for that implementation.

The intent is not to have a mixture of node definitions in the same implementation (or in different
domains within an implementation). Note that if a node is defined as a thread of execution with its
private address space (like a process), a core with a single unprotected address space OS is equivalent
to a node, whereas a core with a virtual memory OS can host multiple nodes.

The definition of a node is flexible because this allows applications to be written in the most portable
fashion supported by the underlying hardware, while at the same time supporting more general-purpose
multicore and manycore devices. The definition allows portability of software at the interface level (e.g.,
the functional interface between nodes). However, the software implementation of a particular node
cannot (and often should not) necessarily be preserved across a multicore SoC product line (or across
product lines from different silicon providers) because a given node's functionality may be provided in
different ways, depending on the chosen multicore SoC.

The mrapi_initialize() call takes node number and domain number arguments, and an MRAPI

application may only call mrapi_initialize() once per node. It is an error to call

mrapi_initialize() multiple times from a given thread of control unless mrapi_finalize() is

called between such calls. A given MRAPI implementation will specify what thread of control is a node
for that implementation.

The concept of nodes in MRAPI is shared with other Multicore Association API specifications.
Therefore, implementations that support multiple MCA APIs must define a node in exactly the same
way, and initialization of nodes across these APIs must be consistent. In the future, the Multicore
Association will consider defining a small set of unified API calls and header files that enforce these
semantics.

2.3 Synchronization Primitives

The MRAPI synchronization primitives include mutexes, semaphores, and reader/writer locks.

Mutexes are intended to be simple binary semaphores for exclusive locks. Semaphores allow for
counting locks. The reader/writer locks can be used to implement shared (reader) and exclusive (writer)

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 16 of 160

locking. Mutexes are intended to support very fast, close-to-the-hardware implementations, whereas
semaphores and reader/writer locks provide more flexibility to the application programmer at the
expense of some performance.

All of the synchronization primitives are supported across MRAPI domains by default, but this may have
a performance impact (e.g., chip-to-chip synchronization will necessarily be slower). Sharing across
domains can be disabled by setting the MRAPI_DOMAIN_SHARED attribute of a synchronization primitive

to MRAPI_FALSE (default is MRAPI_TRUE).

2.3.1 Mutexes

MRAPI mutexes are binary, they support recursion (but that is not the default), and they are intended to
be the closest match to underlying hardware acceleration in many systems. Recursive locking is allowed
if the locking node already owns the lock, and if the mutex attributes have been set up to allow
recursion. Recursive locking means that once a mutex is locked, it can be locked again by the lock
owner before unlock is called. For each lock, a unique lock key is returned. This lock key must be
provided when the mutex is unlocked. The implementation uses the keys to match the order of the lock
and unlock calls.

Individual mutex attributes may vary, but they must be set before mutex creation, and they cannot be
altered later.

2.3.2 Semaphores

Semaphores, unlike mutexes, support counting locks. Therefore semaphores are differentiable in terms
of performance and other features–mutexes are binary, and some hardware has hardware acceleration
for this, whereas semaphores have richer functionally but may have slower performance.

2.3.3 Reader/Writer Locks

The MRAPI reader and writer locks provide a convenient mechanism for optimized access to critical
sections of code that are not always intended to modify shared data. These primitives support multiple
read-only accessors at any given time, or one exclusive accessor. This supports the Reader/Writer
Locks (RWL) software pattern that is commonly used for cases where there are more readers than
writers. In order to guarantee fairness, MRAPI implementations must enforce serialization of requests,
such that that no new read lock will be granted while a blocked write lock request is pending.

2.4 Memory

MRAPI supports two different notions of memory: shared memory and remote memory. Shared memory
is provided in MRAPI to support applications that are deployed on hardware which has physically
shared memory with hardware-managed cache coherency (coherent shared memory), but which cannot
rely on a single operating system to provide a coherent shared-memory allocation facility. Implementing
this can be hard, and discussions are ongoing with the MCA Hypervisor working group to understand a
potential relationship for supporting coherent shared memory. Remote memory is provided for systems
that require the use of explicit CPU, DMA, or other non-CPU mechanisms to move data between
memory subsystems, or which do not support hardware-managed cache coherency. The MRAPI
specification allows for implementations to support only those types of MRAPI memory that are feasible
for a given system, but the implementation must provide all API entry points and indicate via error
reporting that a given request cannot be satisfied.

2.4.1 Shared Memory

The functionality provided by the MRAPI shared memory API is similar to that of POSIX shared
memory, but MRAPI extends the functionality beyond the scope of a single operating system. It provides

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 17 of 160

the ability to manage the access to physically coherent shared memory between heterogeneous threads
of execution that may be on different operating systems and different types of cores.

2.4.2 Remote Memory

Modern heterogeneous multicore systems often contain multiple memory spaces, where data is moved
between memory spaces via non-CPU mechanisms such as direct memory access (DMA). One
example is the Cell Broadband Engine processor: the Power Processor Element (PPE) is a standard
Power Architecture™ core connected to main memory, but the processor also contains eight Synergistic
Processor Elements (SPEs) each of which has a small local store. Data must be copied to and from
SPE local stores via explicit DMA operations.

Remote memory might be implemented in many different ways, depending on the underlying hardware.
Sometimes actual copying (i.e., read or write operations) are needed, sometimes just software initiated
cache operations are needed (i.e., invalidate or flush). However, the purpose of an API should be to
hide these differences in order to enable portable and hardware independent software. So, in order to
access data, an API call should be made that might cause either a "read" and "sync", or some
combination (depending on the underlying hardware). The user should not need to care. The software
layer that constitutes the API should make sure the necessary operations are performed.

From the point of view of a given processing element, remote memory is memory that cannot be
accessed via standard load and store operations. For example, host memory is remote to a GPU core;
the local store of a Cell SPE is remote to the other SPEs or the PPE.

MRAPI offers a set of API functions for manipulating remote memory. Like MRAPI shared memory, the
API provides functions for creating, initializing, and attaching to remote memory. Unlike MRAPI shared
memory, the API provides functions for reading from and writing to remote memory.

The API does not place restrictions on the mechanism used for data transfer. However, catering to the
common case where it is desirable to overlap data movement with computation, the API provides non-
blocking read and write functions. In addition, flush and sync primitives are provided to allow support for
software-managed caches. The API read and write functions also support scatter/gather accesses.

For MRAPI users and implementers concerned about performance of the flush and synch functions, the
MRAPI working group recommends use of multiple memory regions; the implementation of the flush
routine should have the semantics of "anything that is dirty should be pushed back to memory", versus
“everything should be pushed back to memory”.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 18 of 160

Legend

Local

Memory

rmem

Buffer

Local

Memory

Local

Buffer

Local

Memory

DMA

Engine

Software

Cache

Local

Buffer

Core0 Core1 Core2

Node0 Node1 Node2

mrapi_rmem_handle mrapi_rmem_handle

ptrptr

Implementation-Specific

Native

Read/Write

Data Movement

MRAPI

Read/Write

Native

Read/Write

Native

Read/Write
MRAPI

Read/Write

ptr

MRAPI Calls

MRAPI Implementation Activity

Program Data Access

Figure 1. Remote Memory Concepts

Figure 1 depicts the remote memory concepts in MRAPI. Access semantics are per remote memory
(rmem) buffer instance, as follows:

• Strict Semantics: The type of MRAPI access (such as DMA or software cache) is defined at the
time a rmem buffer is created. All MRAPI accesses to that rmem buffer must be of a uniform type.

Each client of the buffer specifies an access type with the mrapi_rmem_get() call and it is an

error to request an access type other than that which was used to create the buffer.

• Any Semantics: The type of MRAPI access (such as DMA or software cache) is set to
MRAPI_RMEM_ATYPE_ANY at the time the rmem buffer is created. When a client handle attaches,

it may specify any access type supported by the MRAPI implementation. Different types of
accesses are supported concurrently. (Note that MRAPI_RMEM_ATYPE_ANY is only allowed for

buffer creation; clients must call get using a specific access type, e.g.,

MRAPI_RMEM_ATYPE_DEFAULT, or other types provided by the implementation, such as DMA)

Local pointer-based read/write is always allowed, limited to access of local target buffers on clients.
However, coherency issues must be managed by the application using MRAPI flush and synch calls
(Sections 3.4.2.13 and 3.4.2.14). MRAPI implementations must guarantee that the effect of a synch
operation must be complete before the next local read/write operation on the remote memory segment,
and that the flush operation must block until it has completed.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 19 of 160

Remote accesses (reads or writes) always result in a copy and must use MRAPI calls. Implementations
may define multiple access types (depending on underlying silicon capabilities), but must provide
MRAPI_RMEM_ATYPE_DEFAULT, which has strict semantics and is guaranteed to work.

2.5 Metadata

MRAPI provides a set of API calls designed to allow access to information regarding the underlying
hardware context an application is running on. These capabilities are described in the following
sections.

2.5.1 Metadata Resource Data Structure

A call to mrapi_resources_get() returns a data structure of type mrapi_resource_t, see Section

2.11.4. This data structure is provided in the form of a tree containing the set of resources that are
visible to the calling MRAPI node. Each node in the tree represents a resource in the system, and each
node contains attributes that provide additional information about a given resource. The resource tree
may be optionally filtered by the subsystem_filter input parameter. Examples of such filters include

CPU, cache, and hardware accelerators. An MRAPI implementation must define what filters it can
provide as an enumerated type.

The resource data structure can contain hierarchical nodes in addition to the resource nodes
themselves. For example, the concept of a core complex, which could contain multiple cores, would be
represented as a parent node to the core nodes in the resource tree.

During initialization MRAPI may read in the system resources from a data file which may have a tree
structure, such as XML or a device tree, so it is convenient to represent the resource data structure as a
tree. Alternatively, the resources could be statically compiled into the MRAPI implementation.

See Section 5.1 for a use case and example code for getting and navigating a resource tree.

2.6 Attributes

Attributes are provided as a means of extension for the API. Different implementations may define and
support additional attributes beyond those pre-defined by the API. In order to promote portability and
implementation flexibility, attributes are maintained in an opaque data structure that may not be directly
examined by the user. Each resource (e.g., mutex, semaphore) has an attributes data structure
associated with it, and many attributes have a small set of predefined values that must be supported by
MRAPI implementations The user may initialize, get, and set these attributes.

If the user wants default behavior, the intention is that they should not have to call the initialize, get, and
set attribute functions. However, if the user wants non-default behavior, the sequence of events should
be as follows:

1. mrapi_<resource>_init_attributes(): Returns an attributes structure with all attributes

set to their default values.

2. mrapi_<resource>_set_attribute() (Repeat for all attributes to be set): Sets the given

attribute in the attributes structure parameter to the given value.

3. mrapi_<resource>_create(): Passes the attributes structure modified in the previous step

as a parameter to this function.

After a resource has been created, its attributes may not be changed.

At any time, the user can call mrapi_<resource>_get_attribute() to query the value of an

attribute.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 20 of 160

For a use case in which attributes are customized, see section: 5.1.

2.7 Sharing Across Domains

By default, most of the MRAPI primitives are shared across MRAPI domains (Section 2.1).
Implementations may suffer a performance impact for resources that are shared across domains.

The following MRAPI primitives are shared across domains by default: mutexes, semaphores,
reader/writer locks, and remote memory. For any of these primitives, you can disable sharing across
domains by setting the MRAPI_DOMAIN_SHARED attribute to MRAPI_FALSE and passing it to the

corresponding *_create() function.

For the remaining primitive–MRAPI shared memory–the determination of which nodes it can be shared
with (regardless of their domains) is specified in the nodes list that is passed in when the shared
memory is created.

2.8 Waiting for Non-Blocking Operations

The API has blocking, non-blocking, and single-attempt blocking variants for many functions. The non-
blocking variants have “_i” appended to the function name to indicate that the function call will return

immediately but the requested transaction will complete in a non-blocking manner. The single-attempt
blocking functions will have the word "try" in the function name (for example, mrapi_mutex_trylock).

Remote memory is the only resource that supports non-blocking variants (for reads/writes).

The non-blocking versions fill in an mrapi_request_t object and return control to the user before the

requested operation is completed. The user can then use the mrapi_test(), mrapi_wait(), and

mrapi_wait_any() functions to query the status of the non-blocking operation. The mrapi_test()

function is non-blocking whereas the mrapi_wait() and mrapi_wait_any() functions will block

until the requested operation completes or a timeout occurs.

Some blocking functions may have to wait for system events–e.g. buffer allocation or for data to arrive–
and the duration of the blocking will be arbitrarily long (and may be infinite), whereas other blocking
functions do not need to wait for system events and can always complete in a timely fashion, with a
success or failure. Single-attempt blocking functions that complete in this timely fashion include
mrapi_mutex_trylock(), mrapi_sem_trylock(), mrapi_rwl_trylock().

If a buffer of data is passed to a non-blocking operation (for example, to mrapi_rmem_write_i())

that buffer may not be accessed by the user application for the duration of the non-blocking operation.
That is, after a buffer has been passed to a non-blocking operation, the program may not read or write
the buffer until mrapi_test(), mrapi_wait(), or mrapi_wait_any() have indicated completion,

or until mrapi_cancel() has canceled the operation.

2.9 Error Handling Philosophy

Error handling is a fundamental part of the MRAPI specification. However, some accommodations have
been made to support trading-off completeness for efficiency of implementation. For example, some API
functions allow implementations to optionally handle errors. Consistency and efficient coding styles also
govern the design of the error handling. In general, function calls include an error code parameter used
by the API function to indicate detailed status. In addition, the return values of several API functions
indicate success or failure, which enables efficient coding practice. A parameter of type
mrapi_status_t will encode success or failure states of API calls. MRAPI_NULL is a valid return

value for mrapi_status_t; it can be used for implementation optimization.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 21 of 160

If a process or thread attached to a node were to fail, it is generally up to the application to recover from
this failure. MRAPI provides timeouts for the mrapi_wait() and mrapi_wait_any() functions, and

an mrapi_cancel() function to clear outstanding non-blocking requests at the non-failing side. It is

also possible to reinitialize a failed node, by first calling mrapi_finalize().

2.10 Timeout and Cancellation Philosophy

MRAPI provides timeout functionality for its non-blocking calls through the timeout capability of the
mrapi_wait() and mrapi_wait_any() functions. Many blocking-function implementations have

timeout_t parameters. Setting the timeout to 0 means a function call will not time out. Setting it to

MRAPI_INFINITE means it will eventually time-out but only after the maximum number of tries.

MRAPI also provides cancellation functionality for its non-blocking calls through the mrapi_cancel()

function.

2.11 Data Types

MRAPI uses predefined data types for maximum portability. The predefined MRAPI data types are
defined in the following subsections. To simplify the use of multiple MCA (Multicore Association) APIs,
some MRAPI data types have MCA equivalents and some MRAPI functions will have MCA-equivalent
functions that can be used for multiple MCA APIs. An MRAPI implementation is not required to provide
MCA-equivalent functions.

In general, API parameters that refer to MRAPI entities are opaque handles that should not be
examined or interpreted by the application program. Obtaining a handle is done either via a create
function or a get function. Create and get functions require MRAPI ID types (see Sections 2.11.1,
2.11.2, 2.11.4, 2.11.6, 2.11.13) to be passed in and will return a handle (see Sections 2.11.5, 2.11.7,
2.11.8, 2.11.10, 2.11.11) for use in all other function calls related to that MRAPI object.

2.11.1 mrapi_domain_t

The mrapi_domain_t type is used for MRAPI domains. The domain id scheme is implementation-

defined. For application portability we recommend using symbolic constants in your code. The
mrapi_domain_t has an mca_domain_t equivalent.

2.11.2 mrapi_node_t

The mrapi_node_t type is used for MRAPI nodes. The node numbering is implementation-defined.

For application portability we recommend using symbolic constants in your code. The mrapi_node_t

has an mca_node_t equivalent.

2.11.3 Initialization Parameters and Information

Initialization parameters allow implementations to configure the MRAPI runtime. A parameter allows
implementations to provide information about the MRAPI runtime–both MRAPI-specified and
implementation-specific information.

2.11.3.1 mrapi_param_t

Initialization parameters will vary by implementation, and may include specifications of the amount of
resources to be used for a specific implementation or configuration, such as the maximum number of
nodes.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 22 of 160

2.11.3.2 mrapi_info_t

The informational parameters include MRAPI-specified information as outlined below, as well as
implementation specific information. Implementation specific information must be documented by the
implementer.

MRAPI-defined initialization information:

• mrapi_version: MRAPI version. The three last (rightmost) hex digits are the minor number,

and those left of the minor number are the major number.

• organization_id: Implementation vendor or organization ID.

• implementation_version: Vendor version. The three last (rightmost) hex digits are the minor

number, and those left of the minor number are the major number.

• number_of_domains: Number of domains allowed by the implementation.

• number_of_nodes: Number of nodes allowed by the implementation.

2.11.4 mrapi_resource_t

The mrapi_resource_t type is used to represent a resource in an MRAPI system. It is an opaque

data type, with the exception of four elements: (1) name: a null-terminated C-style string containing the

name of this resource, (2) resource_type: the type, (3) children: array of

mrapi_resource_t*,and (4) child_count: the number of elements that are in the children array.

These elements allow a set of resources to be arranged in a tree data structure that can be walked by
the programmer using the children and child_count elements. The opaque section of the data

structure contains attributes of the given resource. Access to attributes of the mrapi_resource_t type

is through API calls defined in Section 3.6.

Figure 2 shows a mrapi_resource_t tree with a root node and two children.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 23 of 160

mrapi_resource_t* root

name

resource_type

OPAQUE attributes

mrapi_resource_t* children[]

int child_count (=2)

name

resource_type

OPAQUE attributes

children[]

child_count (=0)

name

resource_type

OPAQUE attributes

children[]

child_count (=0)

children[0]

children[1]

Figure 2. An mrapi_resource_t Tree

2.11.5 mrapi_mutex_hndl_t

The mrapi_mutex_hndl_t type is used to lock and unlock a mutex. MRAPI routines for creating and

using the mrapi_mutex_hndl_t type are covered in Section 3.3.1. The mrapi_mutex_hndl_t is an

opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type as this can
result in non-portable application code.

2.11.6 mrapi_key_t

The mrapi_key_t type is used to support recursive locking and unlocking for mutexes (see Section

3.3.1). The key is passed to the lock call and the system will fill in a unique key for that lock. The key is
passed back on the unlock call.

2.11.7 mrapi_sem_hndl_t

The mrapi_sem_hndl_t type is used to lock and unlock a semaphore. MRAPI routines for creating

and using the mrapi_sem_hndl_t type are covered in Section 3.3.2. The mrapi_sem_hndl_t is an

opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type as this can
result in non-portable application code.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 24 of 160

2.11.8 mrapi_rwl_hndl_t

The mrapi_rwl_hndl_t type is used to lock and unlock a reader/writer lock. MRAPI routines for

creating and using the mrapi_rwl_hndl_t type are covered in Section 3.3.3. The

mrapi_rwl_hndl_t is an opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type, as this can
result in non-portable application code.

2.11.9 mrapi_rwl_mode_t

The mrapi_rwl_mode_t type is used to specify the type of reader/writer lock you are attempting to

lock. The values are MRAPI_READER (shared) or MRAPI_WRITER (exclusive). See Section 3.3.3 for the

API calls that require this parameter.

2.11.10 mrapi_shmem_hndl_t

The mrapi_shmem_hndl_t type is used to access shared memory. MRAPI routines for creating and

using the mrapi_shmem_hndl_t type are covered in Section 3.4.1. The mrapi_shmem_hndl_t is an

opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type, as this can
result in non-portable application code.

2.11.11 mrapi_rmem_hndl_t

The mrapi_rmem_hndl_t type is used to access remote memory. MRAPI routines for creating and

using the mrapi_rmem_hndl_t type are covered in Section 3.4.2. The mrapi_rmem_hndl_t is an

opaque data type whose exact definition is implementation-defined.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type, as this can
result in non-portable application code.

2.11.12 mrapi_rmem_atype_t

The mrapi_rmem_atype_t type is used to specify the access type to be used for remote memory (see

Section 2.4.2 and Section 3.4.2). Access semantics are per remote-memory buffer instance, and are
either strict (meaning all clients must use the same access type), or any (meaning that clients may use
any type supported by the MRAPI implementation). Implementations may define multiple access types
(depending on underlying silicon capabilities), but must provide at minimum:
MRAPI_RMEM_ATYPE_ANY, which has any semantics, and MRAPI_RMEM_ATYPE_DEFAULT, which has

strict semantics. MRAPI_RMEM_ATYPE_ANY is only valid for remote-memory buffer creation; clients

must use MRAPI_RMEM_ATYPE_DEFAULT or another type of access mechanism provided by the

MRAPI implementation (for example DMA).

2.11.13 Identifiers

The following types are used to get shared resources:

• mrapi_mutex_id_t

• mrapi_sem_id_t

• mrapi_shmem_id_t

• mrapi_rmem_id_t

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 25 of 160

These ID types are only used to get handles to the associated types of MRAPI entities.

• These IDs may either be known a priori or passed as messages to the other nodes.

• The implementation defines what is invalid. For any identifier, mrapi_X_id (for example

mrapi_mutex_id_t, where X=mutex) there is a pair of corresponding identifiers in the

MRAPI header file–MRAPI_MAX_X_ID and MRAPI_MAX_USER_X_ID–that can be examined by

the application writer to determine valid ID ranges. MRAPI also supports MRAPI_X_ID_ANY (as

in MCAPI endpoint creation). Thus, user-specified IDs can range from
0..MRAPI_MAX_USER_X_ID and ‘ANY’ ids range from MRAPI_MAX_USER_X_ID+1 ..
MRAPI_MAX_X_ID

• The user-specified space is disjoint from the ANY space to avoid race conditions for the user-
specified IDs.

2.11.14 Scalars

The following scalar types are used for signed and unsigned 64-, 32-, 16-, and 8-bit scalars:

• mrapi_uint64_t

• mrapi_uint32_t

• mrapi_uint16_t

• mrapi_uint8_t

• mrapi_int64_t

• mrapi_int32_t

• mrapi_int16_t

• mrapi_int8_t

2.11.15 mrapi_request_t

The mrapi_request_t type is used to record the state of a pending non-blocking MRAPI transaction

(see Section 3.5). Non-blocking MRAPI routines exist only for reading and writing remote memory. An
mrapi_request_t can only be used by the node it was created on. The mrapi_request_t has an

mca_request_t equivalent.

NOTE: The MRAPI API user should not attempt to examine the contents of this data type, as this can
result in non-portable application code.

2.11.16 mrapi_status_t

The mrapi_status_t type is an enumerated type used to record the result of an MRAPI API call. If a

status can be returned by an API call, the associated MRAPI API call will allow a mrapi_status_t to

be passed by reference. The API call will fill in the status code, and the API user may examine the
mrapi_status_t variable to determine the result of the call. The mrapi_status_t has an

mca_status_t equivalent.

2.11.17 mrapi_timeout_t

The mrapi_timeout_t type is an unsigned scalar type used to indicate the duration that an

mrapi_wait() or mrapi_wait_any() API call will block before reporting a timeout. The units of the

mrapi_timeout_t data type are implementation-defined because mechanisms for time keeping vary

from system to system. Applications should not rely on this feature for satisfaction of realtime
constraints because its use will not guarantee application portability across MRAPI implementations.
The mrapi_timeout_t data type is intended only to allow for error detection and recovery. The

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 26 of 160

mrapi_timeout_t has an mca_timeout_t equivalent. The reserved values are 0 for do not block at

all, and MAX (unsigned 32-bit) for MRAPI_INFINITE.

2.11.18 Other MRAPI Data Types

MRAPI defines its own integer, Boolean and other types, some of which have MCA equivalents. See the
header files on page 147 of this document for specifics on these data types.

2.12 MRAPI Compatibility with MCAPI

The MRAPI working group is following in the footsteps of the MCAPI working group. Therefore, this
specification has adopted similar philosophies and the same style for the API, data types, etc. Because
MRAPI and MCAPI are part of the larger Multicore Association roadmap, the working group expended
great effort to ensure that MRAPI functionality is orthogonal to MCAPI functionality while making sure
they are interoperable (for example, we had discussions around shared memory for MRAPI and zero
copy messaging for MCAPI.)

2.13 Application Portability Concerns

The MRAPI working group desires to enable application portability but cannot guarantee it. The guiding
principles that should be used by application writers are:

• Write as much of the application in as portable a fashion as possible.

• Encapsulate optimizations for efficiency or to take advantage of specialized dedicated hardware
acceleration where possible and necessary.

The end result of this approach should be that, from a given MRAPI node's perspective, it should not be
possible nor required for that node to know whether it is interacting with another node within the same
process, on the same processor, or even on the same chip. A given node should not know or care
whether another node, with which it is interacting, is implemented in hardware or software.

The MRAPI working group believes that this approach will allow portability of software to be maintained
at the interface level (e.g., the functional interface between nodes). However, the software
implementation of a particular node cannot (and often should not) necessarily be preserved across a
multicore SoC product line. or across product lines from different silicon providers, because a given
node's functionality may be provided in different ways, depending on the chosen multicore SoC. For
more on MRAPI nodes see Section 2.2.

2.14 Implementation Concerns

2.14.1 Thread-Safe Implementations

MRAPI implementations are assumed to be reentrant (thread-safe). Essentially, if an MRAPI
implementation is available in a threaded environment, then it must be thread-safe. MRAPI
implementations can also be available in non-threaded environments. The provider of such
implementations will need to clearly indicate that the implementation is not thread-safe.

2.15 Potential Future Extensions

With the goal of implementing MRAPI efficiently, the API has been kept simple. This has the potential
for adding more functionality on top of MRAPI later. Some specific areas for adding functionality include
read/copy/update (RCU) locks, non-owner remote memory allocation, application-level metadata,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 27 of 160

locking of resource lists, and informational functions for debugging, statistics (optimization), and status.
These areas are strong candidates for future extensions, and they are briefly described in the following
subsections.

2.15.1 RCU (read, copy, update) locks

Although this feature is common in certain SMP operating systems, it is not clear that the feature scales
well to embedded and/or non-SMP contexts. If research currently underway at various universities
dispels this concern, then RCU locks may be a feature worth adding to MRAPI.

2.15.2 Non-Owner Remote Memory Allocation

Certain use cases considered by the working group indicated the usefulness of giving a node the ability
to obtain memory from a different node. After consideration, the working group determined that the API
could be kept simple and this ability could be satisfied by using MCAPI messaging to allow one node to
ask the other node to allocate memory on its behalf. In the future, if this proves to be too inefficient for
real-world application scenarios, we may consider adding this feature.

2.15.3 Application-Level Metadata

Application-level metadata can be used for rich higher-level functionality. The MRAPI working group
believes this should be a layered service that can be built using a combination of MCAPI and MRAPI
features. If this proves to be difficult in the future, we may consider adding this feature.

2.15.4 Locking of Resource Lists

While similar APIs for resource management provide functions for locking lists of resources, the MRAPI
working group currently believes this can be done well enough with mutexes and semaphores,
especially given that MRAPI cannot enforce such locks (being a cooperative sharing API). If in the
future it is proven we were mistaken, we may consider adding this feature.

2.15.5 Debug, Statistics and Status functions

Support functions providing information for debugging, optimization and system status are useful in
most systems. This is worth future consideration and would be a valuable addition to MRAPI.

2.15.6 Multiple Semaphore Lock Requests

It may be useful to add a feature that allows allocation of multiple counts of semaphore at once, instead
of recursively calling the lock().

2.15.7 Node Lists for Remote Memory Creation Routines

We may wish to add a node list parameter to the shared-memory creation routines. This would provide
symmetry with the shared memory routines.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 28 of 160

3. MRAPI API

The MRAPI API is divided into five major parts:

• General API functions

• Mutex, semaphore, and reader/writer lock functions

• Memory-related functions

• Metadata functions

• Non-blocking operations

The following sections enumerate the API calls for each of these five major parts.

3.1 Conventions

MRAPI_IN and MRAPI_OUT are used to distinguish between input and output parameters.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 29 of 160

3.2 General

This section describes initialization and introspection functions. All applications wishing to use MRAPI
functionality must use the initialization and finalization routines. Following initialization, the introspection
functions can provide important information to MRAPI-based applications.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 30 of 160

3.2.1 MRAPI_INITIALIZE

NAME

mrapi_initialize

SYNOPSIS

#include <mrapi.h>

void mrapi_initialize(

 MRAPI_IN mrapi_domain_t domain_id,

 MRAPI_IN mrapi_node_t node_id,

 MRAPI_IN mrapi_parameters_t* mrapi_parameters,

 MRAPI_OUT mrapi_info_t* mrapi_info,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_initialize() initializes the MRAPI environment on a given MRAPI node in a given

MRAPI domain. It has to be called by each node using MRAPI. mrapi_parameters is used to

pass implementation specific initialization parameters. mrapi_info is used to obtain information

from the MRAPI implementation, including MRAPI and the underlying implementation version
numbers, implementation vendor identification, the number of nodes in the topology, the number of
ports on the local node and vendor specific implementation information, see the header files for
additional information. A node is a process, a thread, or a processor (or core) with an independent
program counter running a piece of code. In other words, an MRAPI node is an independent thread
of control. An MRAPI node can call mrapi_initialize() once per node, and it is an error to call

mrapi_initialize() multiple times from a given node, unless mrapi_finalize() is called in

between. A given MRAPI implementation will specify what is a node (i.e., what thread of control–
process, thread, or other–is a node) in that implementation. A thread and process are just two
examples of threads of control, and there could be others.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ENO_INIT The MRAPI environment could not be initialized.
MRAPI_ERR_NODE_INITIALIZED The MRAPI environment has already been initialized.
MRAPI_ERR_NODE_INVALID The node_id parameter is not valid.

MRAPI_ERR_DOMAIN_INVALID The domain_id parameter is not valid.

MRAPI_ERR_PARAMETER Invalid mrapi_parameters or mrapi_info parameter.

NOTE

SEE ALSO

mrapi_finalize()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 31 of 160

3.2.2 MRAPI_NODE_INIT_ATTRIBUTES

NAME

mrapi_node_init_attributes

SYNOPSIS

#include <mrapi.h>

void mrapi_node_init_attributes(

 MRAPI_OUT mrapi_node_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Unless you want the defaults, this call must be used to initialize the values of an
mrapi_node_attributes_t structure prior to mrapi_node_set_attribute(). Use

mrapi_node_set_attribute() to change any default values prior to calling

mrapi_initialize().

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_PARAMETER Invalid attributes parameter.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 32 of 160

3.2.3 MRAPI_NODE_SET_ATTRIBUTE

NAME

mrapi_node_set_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_node_set_attribute(

 MRAPI_OUT mrapi_node_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function is used to change default values of an mrapi_node_attributes_t data structure

prior to calling mrapi_initialize(). Calls to this function have no effect on node attributes

once the node has been created and initialized.

At this time there are no MRAPI-defined node attributes.

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_ATTR_READONLY Attribute cannot be modified.

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 33 of 160

3.2.4 MRAPI_NODE_GET_ATTRIBUTE

NAME

mrapi_node_get_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_node_get_attribute (

 MRAPI_IN mrapi_node_t node,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Returns the attribute that corresponds to the given attribute_num for this node. The attribute

may be viewed but may not be changed.

RETURN VALUE

On success *status is set to MRAPI_SUCCESS and the attribute value is filled in. On error,

*status is set to the appropriate error defined below and the attribute value is undefined. The

attribute identified by the attribute_num is returned in the void* attribute parameter.

ERRORS

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_node_set_attribute() for a list of pre-defined attribute numbers.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 34 of 160

3.2.5 MRAPI_FINALIZE

NAME

mrapi_finalize

SYNOPSIS

#include <mrapi.h>

void mrapi_finalize(

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_finalize() finalizes the MRAPI environment on a given MRAPI node and domain. It has

to be called by each node using MRAPI. It is an error to call mrapi_finalize() without first

calling mrapi_initialize(). An MRAPI node can call mrapi_finalize() once for each call

to mrapi_initialize(), but it is an error to call mrapi_finalize() multiple times from a

given <domain,node> unless mrapi_initialize() has been called prior to each

mrapi_finalize() call.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_NODE_FINALFAILED The MRAPI environment could not be finalized.
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 35 of 160

3.2.6 MRAPI_DOMAIN_ID_GET

NAME

mrapi_domain_id_get

SYNOPSIS

#include <mrapi.h>

mrapi_domain_t mrapi_domain_id_get(

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Returns the domain id associated with the local node.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 36 of 160

3.2.7 MRAPI_NODE_ID_GET

NAME

mrapi_node_id_get

SYNOPSIS

#include <mrapi.h>

mrapi_node_t mrapi_node_id_get(

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Returns the node id associated with the local node and domain.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 37 of 160

3.3 Synchronization Primitives

MRAPI supports three types of synchronization primitives: mutexes, semaphores and reader/writer
locks. They provide locking functionality through the use of a flag (mutex) or a counter (semaphores) or
combination of flag and counter (reader/writer locks). Although a binary semaphore can be used as a
mutex, MRAPI explicitly provides mutexes to allow for hardware acceleration. Although Reader/Writer
locks can be implemented on top of mutexes and semaphores, MRAPI provides them as a
convenience.

Within MRAPI, there is no concept of ownership for the synchronization primitives. Any node may create
or get a mutex, semaphore or reader/writer lock (provided it knows the shared key) and any node may
delete the mutex, semaphore or reader/writer lock. To support performance and debuggability tradeoffs,
MRAPI provides two types of error checking; basic (default) and extended (enabled via the
MRAPI_ERROR_EXT attribute). When extended error checking is enabled, if lock is called on a mutex,

semaphore or reader/writer lock that no longer exists, an MRAPI_ERR_[MUTEX|SEM|RWL]_DELETED

error code will be returned. When extended error checking is disabled, the MRAPI_ERR_[MUTEX |

SEM | RWL]_INVALID error will be returned and the lock will fail. The benefit of extended error

checking is for early functional verification/validation of the code and the working group feels this is a
valuable feature for easing the burden of multicore development and debugging. Because extended
error checking can be resource intensive, it is optional and disabled by default.

By default, the synchronization primitives are shared across domains. Set the MRAPI_DOMAIN_SHARED

attribute to false when you create the mutex, semaphore or reader/writer lock to disable resource
sharing across domains. We cannot always expect sharing across domains to be efficient.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 38 of 160

3.3.1 Mutexes

MRAPI mutexes provide exclusive locking functionality through the use of a flag (just like a binary
semaphore). MRAPI mutexes support recursive locking. Recursive locking means that once a mutex is
locked, lock may be called again before unlock is called. For each call to lock, a unique lock key is
returned. This lock key must be passed in to the call to unlock. The implementation uses the keys to
match the order of the lock/unlock calls. Recursive locking is disabled by default and can be enabled by
setting the MRAPI_MUTEX_RECURSIVE attribute when the mutex is created. When the mutex is not

recursive, the lock_keys are ignored.

If mrapi_mutex_lock() is called and the lock is currently locked and recursive locking is disabled,

then the function will block until the lock is available. It is safer to use mrapi_mutex_trylock()

unless you are certain that the lock will eventually succeed. Otherwise, a thread of execution can block
forever waiting for the lock.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 39 of 160

3.3.1.1 MRAPI_MUTEX_CREATE

NAME

mrapi_mutex_create

SYNOPSIS

#include <mrapi.h>

mrapi_mutex_hndl_t mrapi_mutex_create(

 MRAPI_IN mrapi_mutex_id_t mutex_id,

 MRAPI_IN mrapi_mutex_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function creates a mutex. For non-default behavior, attributes must be set before the call to
mrapi_mutex_create(). Once a mutex has been created, its attributes may not be changed. If

the attributes are NULL, then default attributes will be used. The recursive attribute is disabled by

default. If you want to enable recursive locking/unlocking then you need to set that attribute before
the call to create. If mutex_id is set to MRAPI_MUTEX_ID_ANY, then MRAPI will choose an

internal id for you.

RETURN VALUE

On success a mutex handle is returned and *status is set to MRAPI_SUCCESS. On error,

*status is set to the appropriate error defined below. In the case where the mutex already exists,

status will be set to MRAPI_EXISTS and the handle returned will not be a valid handle.

ERRORS

MRAPI_ERR_MUTEX_ID_INVALID The mutex_id is not a valid mutex id.

MRAPI_ERR_MUTEX_EXISTS This mutex is already created.
MRAPI_ERR_MUTEX_LIMIT Exceeded maximum number of mutexes allowed.
MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.
MRAPI_ERR_PARAMETER Invalid attributes parameter.

NOTE

SEE ALSO

See mrapi_mutex_init_attributes() and mrapi_mutex_set_attribute()

See data types identifiers discussion in Section 2.11.13.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 40 of 160

3.3.1.2 MRAPI_MUTEX_INIT_ATTRIBUTES

NAME

mrapi_mutex_init_attributes

SYNOPSIS

#include <mrapi.h>

void mrapi_mutex_init_attributes(

 MRAPI_OUT mrapi_mutex_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function initializes the values of an mrapi_mutex_attributes_t structure. For non-default

behavior this function should be called prior to calling mrapi_mutex_set_attribute(). You

would then use mrapi_mutex_set_attribute() to change any default values prior to calling

mrapi_mutex_create().

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_PARAMETER Invalid attributes parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 41 of 160

3.3.1.3 MRAPI_MUTEX_SET_ATTRIBUTE

NAME

mrapi_mutex_set_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_mutex_set_attribute (

 MRAPI_OUT mrapi_mutex_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function is used to change default values of an mrapi_mutex_attributes_t data structure

prior to calling mrapi_mutex_create(). Calls to this function have no effect on mutex attributes

once the mutex has been created.

MRAPI-defined mutex attributes:

Attribute num Description Data Type Default

MRAPI_MUTEX_RECURSIVE Indicates whether
or not this is a
recursive mutex.

mrapi_boolean_t MRAPI_FALSE

MRAPI_ERROR_EXT Indicates whether
or not this mutex
has extended error
checking enabled.

mrapi_boolean_t MRAPI_FALSE

MRAPI_DOMAIN_SHARED Indicates whether
or not the mutex is
shareable across
domains.

mrapi_boolean_t MRAPI_TRUE

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_ATTR_READONLY Attribute cannot be modified.
MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_ATTR_NUM Unknown attribute number
MRAPI_ERR_ATTR_SIZE Incorrect attribute size
MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 42 of 160

3.3.1.4 MRAPI_MUTEX_GET_ATTRIBUTE

NAME

mrapi_mutex_get_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_mutex_get_attribute (

 MRAPI_IN mrapi_mutex_hndl_t mutex,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Returns the attribute that corresponds to the given attribute_num for this mutex. The attributes

may be viewed but may not be changed (for this mutex).

RETURN VALUE

On success *status is set to MRAPI_SUCCESS and the attribute value is filled in. On error,

*status is set to the appropriate error defined below and the attribute value is undefined. The

attribute identified by the attribute_num is returned in the void* attribute parameter. When

extended error checking is enabled, if this function is called on a mutex that no longer exists, an
MRAPI_ERR_MUTEX_DELETED error code will be returned. When extended error checking is

disabled, the MRAPI_ERR_MUTEX_INVALID error will be returned.

ERRORS

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_MUTEX_INVALID Argument is not a valid mutex handle.
MRAPI_ERR_ATTR_NUM Unknown attribute number
MRAPI_ERR_ATTR_SIZE Incorrect attribute size
MRAPI_ERR_MUTEX_DELETED If the mutex has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return
MRAPI_ERR_MUTEX_DELETED otherwise MRAPI will just

return MRAPI_ERR_MUTEX_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_mutex_set_attribute() for a list of pre-defined attribute numbers.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 43 of 160

3.3.1.5 MRAPI_MUTEX_GET

NAME

mrapi_mutex_get

SYNOPSIS

#include <mrapi.h>

mrapi_mutex_hndl_t mrapi_mutex_get(

 MRAPI_IN mrapi_mutex_id_t mutex_id,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Given a mutex_id, this function returns the MRAPI handle for referencing that mutex.

RETURN VALUE

On success the mutex handle is returned and *status is set to MRAPI_SUCCESS. On error,

*status is set to the appropriate error defined below. When extended error checking is enabled, if

this function is called on a mutex that no longer exists, an MRAPI_ERR_MUTEX_DELETED error code

will be returned. When extended error checking is disabled, the MRAPI_ERR_MUTEX_INVALID

error will be returned.

ERRORS

MRAPI_ERR_MUTEX_ID_INVALID The mutex_id parameter does not refer to a valid mutex or

it is set to MRAPI_MUTEX_ID_ANY.
MRAPI_ERR_NODE_NOTINIT The node/domain is not initialized.
MRAPI_ERR_DOMAIN_NOTSHARED This resource cannot be shared by this domain.
MRAPI_ERR_MUTEX_DELETED If the mutex has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return
MRAPI_ERR_MUTEX_DELETED otherwise MRAPI will just

return MRAPI_ERR_MUTEX_ID_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_mutex_set_attribute()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 44 of 160

3.3.1.6 MRAPI_MUTEX_DELETE

NAME

mrapi_mutex_delete

SYNOPSIS

#include <mrapi.h>

void mrapi_mutex_delete(

 MRAPI_IN mrapi_mutex_hndl_t mutex,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function deletes the mutex. The mutex may only be deleted if it is unlocked. If the mutex
attributes indicate extended error checking is enabled then all subsequent lock requests will be
notified that the mutex was deleted. When extended error checking is enabled, if this function is
called on a mutex that no longer exists, an MRAPI_ERR_MUTEX_DELETED error code will be

returned. When extended error checking is disabled, the MRAPI_ERR_MUTEX_INVALID error will

be returned.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_MUTEX_INVALID Argument is not a valid mutex handle.
MRAPI_ERR_MUTEX_LOCKED The mutex is locked and cannot be deleted.
MRAPI_ERR_MUTEX_DELETED If the mutex has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return
MRAPI_ERR_MUTEX_DELETED otherwise MRAPI will just

return MRAPI_ERR_MUTEX_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 45 of 160

3.3.1.7 MRAPI_MUTEX_LOCK

NAME

mrapi_mutex_lock

SYNOPSIS

#include <mrapi.h>

void mrapi_mutex_lock (

MRAPI_IN mrapi_mutex_hndl_t mutex,

MRAPI_OUT mrapi_key_t* lock_key,

MRAPI_IN mrapi_timeout_t timeout,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function attempts to lock a mutex and will block if another node has a lock on the mutex. When
it obtains the lock, it sets up a unique key for that lock and that key is to be passed back on the call
to unlock. This key allows us to support recursive locking. The lock_key is only valid if status

indicates success. Whether or not a mutex can be locked recursively is controlled via the
MRAPI_MUTEX_RECURSIVE attribute, and the default is MRAPI_FALSE.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. When extended error checking is enabled, if this function is called on a mutex that
no longer exists, an MRAPI_ERR_MUTEX_DELETED error code will be returned. When extended

error checking is disabled, the MRAPI_ERR_MUTEX_INVALID error will be returned.

ERRORS

MRAPI_ERR_MUTEX_INVALID Argument is not a valid mutex handle.
MRAPI_ERR_MUTEX_LOCKED

Mutex is already locked by another node or mutex is already
locked by this node and is not a recursive mutex.

MRAPI_ERR_MUTEX_DELETED If the mutex has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return
MRAPI_ERR_MUTEX_DELETED otherwise MRAPI will just

return MRAPI_ERR_MUTEX_INVALID.

MRAPI_TIMEOUT Timeout was reached.
MRAPI_ERR_PARAMETER Invalid lock_key or timeout parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 46 of 160

3.3.1.8 MRAPI_MUTEX_TRYLOCK

NAME

mrapi_mutex_trylock

SYNOPSIS

#include <mrapi.h>

mrapi_boolean_t mrapi_mutex_trylock(

MRAPI_IN mrapi_mutex_hndl_t mutex,

MRAPI_OUT mrapi_key_t* lock_key,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function attempts to obtain a lock on the mutex. If the lock can’t be obtained because it is
already locked by another node then the function will immediately return MRAPI_FALSE and

status will be set to MRAPI_SUCCESS. If the request can’t be satisfied for any other

reason, then this function will immediately return MRAPI_FALSE and status will be set to the
appropriate error code below. If it is successful in obtaining the lock, it sets up a unique key for that
lock and that key is to be passed back on the call to unlock. The lock_key is only valid if status

indicates success and the function returns MRAPI_TRUE. This key allows us to support recursive

locking. Whether or not a mutex can be locked recursively is controlled via the
MRAPI_MUTEX_RECURSIVE attribute, and the default is MRAPI_FALSE.

RETURN VALUE

Returns MRAPI_TRUE if the lock was acquired, returns MRAPI_FALSE otherwise. If there was an

error then *status will be set to indicate the error from the table below, otherwise *status will

indicate MRAPI_SUCCESS. If the lock could not be obtained then *status will be either

MRAPI_ELOCKED or one of the error conditions in the table below. When extended error checking is

enabled, if lock is called on a mutex that no longer exists, an MRAPI_ERR_MUTEX_DELETED error

code will be returned. When extended error checking is disabled, the
MRAPI_ERR_MUTEX_INVALID error will be returned and the lock will fail.

ERRORS

MRAPI_ERR_MUTEX_INVALID Argument is not a valid mutex handle.
MRAPI_ERR_MUTEX_DELETED If the mutex has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return
MRAPI_ERR_MUTEX_DELETED otherwise MRAPI will just

return MRAPI_ERR_MUTEX_INVALID.

MRAPI_ERR_MUTEX_LOCKED

Mutex is already locked by another node or mutex is already
locked by this node and is not a recursive mutex.

MRAPI_ERR_PARAMETER Invalid lock_key parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 47 of 160

3.3.1.9 MRAPI_MUTEX_UNLOCK

NAME

mrapi_mutex_unlock

SYNOPSIS

#include <mrapi.h>

void mrapi_mutex_unlock(

MRAPI_IN mrapi_mutex_hndl_t mutex,

MRAPI_IN mrapi_key_t* lock_key,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function unlocks a mutex. If the mutex is recursive, then the lock_key parameter passed in

must match the lock_key that was returned by the corresponding call to lock the mutex, and the

set of recursive locks must be released using lock_keys in the reverse order that they were

obtained. When extended error checking is enabled, if this function is called on a mutex that no
longer exists, an MRAPI_ERR_MUTEX_DELETED error code will be returned. When extended error

checking is disabled, the MRAPI_ERR_MUTEX_INVALID error will be returned.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_MUTEX_INVALID Argument is not a valid mutex handle.
MRAPI_ERR_MUTEX_NOTLOCKED Mutex is not locked.
MRAPI_ERR_MUTEX_KEY lock_key is invalid for this mutex.

MRAPI_ERR_MUTEX_LOCKORDER The unlock call does not match the lock order for this
recursive mutex.

MRAPI_ERR_PARAMETER Invalid lock_key parameter.

MRAPI_ERR_MUTEX_DELETED If the mutex has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return
MRAPI_ERR_MUTEX_DELETED otherwise MRAPI will just

return MRAPI_ERR_MUTEX_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 48 of 160

3.3.2 Semaphores

MRAPI semaphores provide shared locking functionality through the use of a counter. When an MRAPI
semaphore is created, the maximum number of available locks is specified (in the
shared_lock_limit parameter). If mrapi_sem_lock() is called and all locks are currently locked,

then the function will block until a lock is available. It is safer to use mrapi_sem_trylock() unless

you are certain that the lock will eventually succeed. Otherwise, your thread of execution can block
forever waiting for the lock.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 49 of 160

3.3.2.1 MRAPI_SEM_CREATE

NAME

mrapi_sem_create

SYNOPSIS

#include <mrapi.h>

mrapi_sem_hndl_t mrapi_sem_create(

 MRAPI_IN mrapi_sem_id_t sem_id,

 MRAPI_IN mrapi_sem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t shared_lock_limit,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function creates a semaphore. Unless you want the defaults, attributes must be set before the
call to mrapi_sem_create(). Once a semaphore has been created, its attributes may not be

changed. If the attributes are NULL, then implementation-defined default attributes will be used. If
sem_id is set to MRAPI_SEM_ID_ANY, then MRAPI will choose an internal id for you. The

shared_lock_limit parameter indicates the maximum number of available locks and it must be

between 0 and MRAPI_MAX_SEM_SHAREDLOCKS.

RETURN VALUE

On success a semaphore handle is returned and *status is set to MRAPI_SUCCESS. On error,

*status is set to the appropriate error defined below. In the case where the semaphore already

exists, status will be set to MRAPI_EXISTS and the handle returned will not be a valid handle.

ERRORS

MRAPI_ERR_SEM_ID_INVALID The semaphore_id is not a valid semaphore id.

MRAPI_ERR_SEM_EXISTS This semaphore is already created.
MRAPI_ERR_SEM_LIMIT Exceeded maximum number of semaphores allowed.
MRAPI_ERR_SEM_LOCKLIMIT The shared lock limit is out of bounds.
MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.
MRAPI_ERR_PARAMETER Invalid attributes parameter.

NOTE

SEE ALSO

mrapi_sem_init_attributes() and mrapi_sem_set_attribute().

See also data types identifiers discussion in Section 2.11.13

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 50 of 160

3.3.2.2 MRAPI_SEM_INIT_ATTRIBUTES

NAME

mrapi_sem_init_attributes

SYNOPSIS

#include <mrapi.h>

void mrapi_sem_init_attributes(

 MRAPI_OUT mrapi_sem_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Unless you want the defaults, this function should be called to initialize the values of an
mrapi_sem_attributes_t structure prior to mrapi_sem_set_attribute(). You would then

use mrapi_sem_set_attribute() to change any default values prior to calling

mrapi_sem_create().

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_PARAMETER Invalid attributes parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 51 of 160

3.3.2.3 MRAPI_SEM_SET_ATTRIBUTE

NAME

mrapi_sem_set_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_sem_set_attribute(

 MRAPI_OUT mrapi_sem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function is used to change default values of an mrapi_sem_attributes_t data structure

prior to calling mrapi_sem_create(). Calls to this function have no effect on semaphore

attributes once the semaphore has been created.

MRAPI-defined semaphore attributes:

Attribute num Description Data Type Default

MRAPI_ERROR_EXT Indicates whether or
not this semaphore
has extended error
checking enabled.

mrapi_boolean_t MRAPI_FALSE

MRAPI_DOMAIN_SHARED Indicates whether or
not this semaphore
is shareable across
domains.

mrapi_boolean_t MRAPI_TRUE

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_ATTR_READONLY Attribute cannot be modified.

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 52 of 160

3.3.2.4 MRAPI_SEM_GET_ATTRIBUTE

NAME

mrapi_sem_get_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_sem_get_attribute (

 MRAPI_IN mrapi_sem_hndl_t sem,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Returns the attribute that corresponds to the given attribute_num for this semaphore. The

attribute may be viewed but may not be changed (for this semaphore).

RETURN VALUE

On success *status is set to MRAPI_SUCCESS and the attribute value is filled in. On error,

*status is set to the appropriate error defined below and the attribute value is undefined. The

attribute identified by the attribute_num is returned in the void* attribute parameter. When

extended error checking is enabled, if this function is called on a semaphore that no longer exists,
an MRAPI_ERR_MUTEX_DELETED error code will be returned. When extended error checking is

disabled, the MRAPI_ERR_SEM_INVALID error will be returned.

ERRORS

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_SEM_INVALID Argument is not a valid semaphore handle.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_SEM_DELETED If the semaphore has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return MRAPI_ERR_SEM_DELETED

otherwise MRAPI will just return MRAPI_ERR_SEM_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_sem_set_attribute() for a list of pre-defined attribute numbers.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 53 of 160

3.3.2.5 MRAPI_SEM_GET

NAME

mrapi_sem_get

SYNOPSIS

#include <mrapi.h>

mrapi_sem_hndl_t mrapi_sem_get(

 MRAPI_IN mrapi_sem_id_t sem_id,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Given a sem_id, this function returns the MRAPI handle for referencing that semaphore.

RETURN VALUE

On success the semaphore handle is returned and *status is set to MRAPI_SUCCESS. On error,

*status is set to the appropriate error defined below. When extended error checking is enabled, if

this function is called on a semaphore that no longer exists, an MRAPI_ERR_SEM_DELETED error

code will be returned. When extended error checking is disabled, the MRAPI_ERR_SEM_INVALID

error will be returned.

ERRORS

MRAPI_ERR_SEM_ID_INVALID The sem_id parameter does not refer to a valid semaphore

or was called with sem_id set to MRAPI_SEM_ID_ANY.

MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.

MRAPI_ERR_DOMAIN_NOTSHARED This resource cannot be shared by this domain.

MRAPI_ERR_SEM_DELETED If the semaphore has been deleted then if
MRAPI_ERROR_EXT attribute is set, MRAPI will return

MRAPI_ERR_SEM_DELETED otherwise MRAPI will just

return MRAPI_ERR_SEM_ID_INVALID.

NOTE

SEE ALSO

See mrapi_sem_set_attribute()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 54 of 160

3.3.2.6 MRAPI_SEM_DELETE

NAME

mrapi_sem_delete

SYNOPSIS

#include <mrapi.h>

void mrapi_sem_delete(

 MRAPI_IN mrapi_sem_hndl_t sem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function deletes the semaphore. The semaphore will only be deleted if the semaphore is not
locked. If the semaphore attributes indicate extended error checking is enabled then all subsequent
lock requests will be notified that the semaphore was deleted.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. When extended error checking is enabled, if this function is called on a semaphore
that no longer exists, an MRAPI_ERR_SEM_DELETED error code will be returned. When extended

error checking is disabled, the MRAPI_ERR_SEM_INVALID error will be returned.

ERRORS

MRAPI_ERR_SEM_INVALID Argument is not a valid semaphore handle.

MRAPI_ERR_SEM_DELETED If the semaphore has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return MRAPI_ERR_SEM_DELETED

otherwise MRAPI will just return MRAPI_ERR_SEM_INVALID.

MRAPI_ERR_SEM_LOCKED The semaphore is locked and cannot be deleted.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 55 of 160

3.3.2.7 MRAPI_SEM_LOCK

NAME

mrapi_sem_lock

SYNOPSIS

#include <mrapi.h>

void mrapi_sem_lock(

MRAPI_IN mrapi_sem_hndl_t sem,

MRAPI_IN mrapi_timeout_t timeout,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function attempts to obtain a single lock on the semaphore and will block until a lock is
available or the timeout is reached (if timeout is non-zero). If the request can’t be satisfied for

some other reason, this function will return the appropriate error code below. An application may
make this call as many times as needed to obtain multiple locks, up to the limit specified by the
shared_lock_limit parameter used when the semaphore was created.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. When extended error checking is enabled, if lock is called on semaphore that no
longer exists, an MRAPI_ERR_SEM_DELETED error code will be returned. When extended error

checking is disabled, the MRAPI_ERR_SEM_INVALID error will be returned and the lock will fail.

ERRORS

MRAPI_ERR_SEM_INVALID Argument is not a valid semaphore handle.

MRAPI_ERR_SEM_DELETED If the semaphore has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return MRAPI_ERR_SEM_DELETED

otherwise MRAPI will just return MRAPI_ERR_SEM_INVALID.

MRAPI_TIMEOUT Timeout was reached.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 56 of 160

3.3.2.8 MRAPI_SEM_TRYLOCK

NAME

mrapi_sem_trylock

SYNOPSIS

#include <mrapi.h>

mrapi_boolean_t mrapi_sem_trylock(

MRAPI_IN mrapi_sem_hndl_t sem,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function attempts to obtain a single lock on the semaphore. If the lock can’t be obtained
because all the available locks are already locked (by this node and/or others) then the function will
immediately return MRAPI_FALSE and status will be set to MRAPI_SUCCESS. If the request can’t

be satisfied for any other reason, then this function will immediately return MRAPI_FALSE and

status will be set to the appropriate error code below.

RETURN VALUE

Returns MRAPI_TRUE if the lock was acquired, returns MRAPI_FALSE otherwise. If there was an

error then *status will be set to indicate the error from the table below, otherwise *status will

indicate MRAPI_SUCCESS. If the lock could not be obtained then *status will be either

MRAPI_ELOCKED or one of the error conditions in the table below. When extended error checking is

enabled, if this function is called on a semaphore that no longer exists, an
MRAPI_ERR_SEM_DELETED error code will be returned. When extended error checking is disabled,

the MRAPI_ERR_SEM_INVALID error will be returned.

ERRORS

MRAPI_ERR_SEM_INVALID Argument is not a valid semaphore handle.

MRAPI_ERR_SEM_DELETED If the semaphore has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return MRAPI_ERR_SEM_DELETED

otherwise MRAPI will just return MRAPI_ERR_SEM_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 57 of 160

3.3.2.9 MRAPI_SEM_UNLOCK

NAME

mrapi_sem_unlock

SYNOPSIS

#include <mrapi.h>

void mrapi_sem_unlock (

MRAPI_IN mrapi_sem_hndl_t sem,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function releases a single lock.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. When extended error checking is enabled, if this function is called on a semaphore
that no longer exists, an MRAPI_ERR_SEM_DELETED error code will be returned. When extended

error checking is disabled, the MRAPI_ERR_SEM_INVALID error will be returned.

ERRORS

MRAPI_ERR_SEM_INVALID Argument is not a valid semaphore handle.

MRAPI_ERR_SEM_NOTLOCKED This node does not have a lock on this semaphore

MRAPI_ERR_SEM_DELETED If the semaphore has been deleted then if MRAPI_ERROR_EXT

attribute is set, MRAPI will return MRAPI_ERR_SEM_DELETED

otherwise MRAPI will just return MRAPI_ERR_SEM_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 58 of 160

3.3.3 Reader/Writer Locks

MRAPI reader and writer locks provide a combination of exclusive (writer) and shared (reader) locking
functionality. A single reader/writer lock provides both types of locking. The type of lock desired is
passed in the mode parameter to the lock function.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 59 of 160

3.3.3.1 MRAPI_RWL_CREATE

NAME

mrapi_rwl_create

SYNOPSIS

#include <mrapi.h>

mrapi_rwl_hndl_t mrapi_rwl_create(

 MRAPI_IN mrapi_rwl_id_t rwl_id,

 MRAPI_IN mrapi_rwl_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t reader_lock_limit,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function creates a reader/writer lock. Unless you want the defaults, attributes must be set
before the call to mrapi_rwl_create(). Once a reader/writer lock has been created, its

attributes may not be changed. If the attributes are NULL, then implementation-defined default
attributes will be used. If rwl_id is set to MRAPI_RWL_ID_ANY, then MRAPI will choose an internal

id for you.

RETURN VALUE

On success a reader/writer lock handle is returned and *status is set to MRAPI_SUCCESS. On

error, *status is set to the appropriate error defined below. In the case where the reader/writer

lock already exists, status will be set to MRAPI_EXISTS and the handle returned will not be a

valid handle.

ERRORS

MRAPI_ERR_RWL_ID_INVALID The rwl_id is not a valid reader/writer lock id.

MRAPI_ERR_RWL_EXISTS This reader/writer lock is already created.
MRAPI_ERR_RWL_LIMIT Exceeded maximum number of reader/writer locks allowed.
MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.
MRAPI_ERR_PARAMETER Invalid attributes parameter.

NOTE

SEE ALSO

mrapi_rwl_init_attributes() and mrapi_rwl_set_attribute().

See data types identifiers discussion: Section 2.11.13

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 60 of 160

3.3.3.2 MRAPI_RWL_INIT_ATTRIBUTES

NAME

mrapi_rwl_init_attributes

SYNOPSIS

#include <mrapi.h>

void mrapi_rwl_init_attributes(

 MRAPI_OUT mrapi_rwl_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Unless you want the defaults, this call must be used to initialize the values of an
mrapi_rwl_attributes_t structure prior to mrapi_rwl_set_attribute(). Use

mrapi_rwl_set_attribute() to change any default values prior to calling

mrapi_rwl_create().

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_PARAMETER Invalid attributes parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 61 of 160

3.3.3.3 MRAPI_RWL_SET_ATTRIBUTE

NAME

mrapi_rwl_set_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_rwl_set_attribute(

 MRAPI_OUT mrapi_rwl_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function is used to change default values of an mrapi_rwl_attributes_t data structure

prior to calling mrapi_rwl_create(). Calls to this function have no effect on mutex attributes

once the mutex has been created.

MRAPI-defined reader/writer lock attributes:

Attribute num Description Data Type Default

MRAPI_ERROR_EXT Indicates whether or
not this reader/writer
lock has extended
error checking
enabled.

mrapi_boolean_t MRAPI_FALSE

MRAPI_DOMAIN_SHARED Indicates whether or
not the reader/writer
lock is shareable
across domains.

mrapi_boolean_t MRAPI_TRUE

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_ATTR_READONLY Attribute cannot be modified.

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 62 of 160

3.3.3.4 MRAPI_RWL_GET_ATTRIBUTE

NAME

mrapi_rwl_get_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_rwl_get_attribute (

 MRAPI_IN mrapi_rwl_hndl_t rwl,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Returns the attribute that corresponds to the given attribute_num for this reader/writer lock. The

attribute may be viewed but may not be changed (for this reader/writer lock).

RETURN VALUE

On success *status is set to MRAPI_SUCCESS and the attribute value is filled in. On error,

*status is set to the appropriate error defined below and the attribute value is undefined. The

attribute identified by the attribute_num is returned in the void* attribute parameter. When

extended error checking is enabled, if this function is called on a reader/writer lock that no longer
exists, an MRAPI_ERR_RWL_DELETED error code will be returned. When extended error checking is

disabled, the MRAPI_ERR_RWL_INVALID error will be returned.

ERRORS

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_RWL_INVALID Argument is not a valid reader/writer lock handle.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_RWL_DELETED If the reader/writer lock has been deleted then if
MRAPI_ERROR_EXT attribute is set, MRAPI will return

MRAPI_ERR_RWL_DELETED otherwise MRAPI will just return

MRAPI_ERR_RWL_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

It is up to the implementation as to whether a reader/writer lock may be shared across domains.
This is specified as an attribute during creation and the default is MRAPI_FALSE.

SEE ALSO

mrapi_rwl_set_attribute() for a list of pre-defined attribute numbers.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 63 of 160

3.3.3.5 MRAPI_RWL_GET

NAME

mrapi_rwl_get

SYNOPSIS

#include <mrapi.h>

mrapi_rwl_hndl_t mrapi_rwl_get(

 MRAPI_IN mrapi_rwl_id_t rwl_id,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Given a rwl_id, this function returns the MRAPI handle for referencing that reader/writer lock.

RETURN VALUE

On success the reader/writer lock handle is returned and *status is set to MRAPI_SUCCESS. On

error, *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_RWL_ID_INVALID The rwl_id parameter does not refer to a valid

reader/writer lock or it was called with rwl_id set to

MRAPI_RWL_ID_ANY.

MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.

MRAPI_ERR_DOMAIN_NOTSHARED This resource cannot be shared by this domain.

MRAPI_ERR_RWL_DELETED If the reader/writer lock has been deleted then if
MRAPI_ERROR_EXT attribute is set, MRAPI will return

MRAPI_ERR_RWL_DELETED otherwise MRAPI will just

return MRAPI_ERR_RWL_ID_INVALID.

NOTE

SEE ALSO

mrapi_rwl_set_attribute()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 64 of 160

3.3.3.6 MRAPI_RWL_DELETE

NAME

mrapi_rwl_delete

SYNOPSIS

#include <mrapi.h>

void mrapi_rwl_delete(

 MRAPI_IN mrapi_rwl_hndl_t rwl,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function deletes the reader/writer lock. A reader/writer lock can only be deleted if it is not
locked. If the reader/writer lock attributes indicate extended error checking is enabled then all
subsequent lock requests will be notified that the reader/writer lock was deleted.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. When extended error checking is enabled, if this function is called on a reader/writer
lock that no longer exists, an MRAPI_ERR_RWL_DELETED error code will be returned. When

extended error checking is disabled, the MRAPI_ERR_RWL_INVALID error will be returned.

ERRORS

MRAPI_ERR_RWL_INVALID Argument is not a valid reader/writer lock handle.

MRAPI_ERR_RWL_LOCKED The reader/writer lock was locked and cannot be deleted.

MRAPI_ERR_RWL_DELETED If the reader/writer lock has been deleted then if
MRAPI_ERROR_EXT attribute is set, MRAPI will return

MRAPI_ERR_RWL_DELETED otherwise MRAPI will just return

MRAPI_ERR_RWL_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 65 of 160

3.3.3.7 MRAPI_RWL_LOCK

NAME

mrapi_rwl_lock

SYNOPSIS

#include <mrapi.h>

void mrapi_rwl_lock(

MRAPI_IN mrapi_rwl_hndl_t rwl,

MRAPI_IN mrapi_rwl_mode_t mode,

MRAPI_IN mrapi_timeout_t timeout,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function attempts to obtain a single lock on the reader/writer lock and will block until a lock is
available or the timeout is reached (if timeout is non-zero). A node may only have one reader lock or
one writer lock at any given time. The mode parameter is used to specify the type of lock:

MRAPI_READER (shared) or MRAPI_WRITER (exclusive). If the lock can’t be obtained for some

other reason, this function will return the appropriate error code below.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. When extended error checking is enabled, if lock is called on a reader/writer lock
that no longer exists, an MRAPI_ERR_RWL_DELETED error code will be returned. When extended

error checking is disabled, the MRAPI_ERR_RWL_INVALID error will be returned. In both cases the

attempt to lock will fail.

ERRORS

MRAPI_ERR_RWL_INVALID Argument is not a valid reader/writer lock handle.

MRAPI_ERR_RWL_DELETED If the reader/writer lock has been deleted then if
MRAPI_ERROR_EXT attribute is set, MRAPI will return

MRAPI_ERR_RWL_DELETED otherwise MRAPI will just return

MRAPI_ERR_RWL_INVALID.

MRAPI_TIMEOUT Timeout was reached.

MRAPI_ERR_RWL_LOCKED The caller already has a lock

MRAPI_ERR_PARAMETER Invalid mode.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 66 of 160

3.3.3.8 MRAPI_RWL_TRYLOCK

NAME

mrapi_rwl_trylock

SYNOPSIS

#include <mrapi.h>

mrapi_boolean_t mrapi_rwl_trylock(

MRAPI_IN mrapi_rwl_hndl_t rwl,

MRAPI_IN mrapi_rwl_mode_t mode,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function attempts to obtain a single lock on the reader/writer lock. A node may only have one
reader lock or one writer lock at any given time. The mode parameter is used to specify the type of

lock: MRAPI_READER (shared) or MRAPI_WRITER (exclusive). If the lock can’t be obtained because

a reader lock was requested and there is already a writer lock or a writer lock was requested and
there is already any lock then the function will immediately return MRAPI_FALSE and status will be

set to MRAPI_SUCCESS. If the request can’t be satisfied for any other reason, then this function will

immediately return MRAPI_FALSE and status will be set to the appropriate error code below.

RETURN VALUE

Returns MRAPI_TRUE if the lock was acquired, returns MRAPI_FALSE otherwise. If there was an

error then *status will be set to indicate the error from the table below, otherwise *status will

indicate MRAPI_SUCCESS. If the lock could not be obtained then *status will be either

MRAPI_ELOCKED or one of the error conditions in the table below. When extended error checking is

enabled, if trylock is called on a reader/writer lock that no longer exists, an
MRAPI_ERR_RWL_DELETED error code will be returned. When extended error checking is disabled,

the MRAPI_ERR_RWL_INVALID error will be returned and the lock will fail.

ERRORS

MRAPI_ERR_RWL_INVALID Argument is not a valid reader/writer lock handle.

MRAPI_ERR_RWL_DELETED If the reader/writer lock has been deleted then if
MRAPI_ERROR_EXT attribute is set, MRAPI will return

MRAPI_ERR_RWL_DELETED otherwise MRAPI will just return

MRAPI_ERR_RWL_INVALID.

MRAPI_ERR_RWL_LOCKED

The reader/writer lock is already exclusively locked.

MRAPI_ERR_PARAMETER Invalid mode.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 67 of 160

3.3.3.9 MRAPI_RWL_UNLOCK

NAME

mrapi_rwl_unlock

SYNOPSIS

#include <mrapi.h>

void mrapi_rwl_unlock (

MRAPI_IN mrapi_rwl_hndl_t rwl,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function releases a single lock. The lock to be released will be either a reader lock or a writer
lock, as specified by the mode parameter used when the lock was obtained.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. When extended error checking is enabled, if this function is called on a reader/writer
lock that no longer exists, an MRAPI_ERR_RWL_DELETED error code will be returned. When

extended error checking is disabled, the MRAPI_ERR_RWL_INVALID error will be returned.

ERRORS

MRAPI_ERR_RWL_INVALID Argument is not a valid reader/writer lock handle.

MRAPI_ERR_RWL_NOTLOCKED This node does not currently hold the given type (reader/writer)
of lock.

MRAPI_ERR_RWL_DELETED If the reader/writer lock has been deleted then if
MRAPI_ERROR_EXT attribute is set, MRAPI will return

MRAPI_ERR_RWL_DELETED otherwise MRAPI will just return

MRAPI_ERR_RWL_INVALID.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 68 of 160

3.4 Memory

MRAPI supports two memory concepts: shared memory and remote memory. Shared memory is
semantically the same as shared memory in, e.g., POSIX except that it is also supported for
heterogeneous systems (here heterogeneity may mean hardware or software), otherwise there would
be no need to have it in the MRAPI standard. Remote memory caters to non-uniform memory
architecture machines such as the Cell processor, where the SPEs cannot access PPE main memory
via load and store instructions, and must use DMA or a software cache, or special purpose accelerators
such as graphics processing units which also use DMA.

For both memory types, remote and shared, a node must attach before using the memory and detach
when finished.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 69 of 160

3.4.1 Shared Memory

MRAPI shared memory provides functionality to create and get shared memory segments, attach them
to the application’s private memory space, query the memory attributes and detach and delete the
memory segments. For a detailed description of MRAPI memory semantics refer to Section 2.4. The
minimum MRAPI shared memory is considered application/user-level; implementations could define
additional attributes which specify various privilege levels but this should be used with caution as it can
seriously inhibit application portability.

For shared memory, MRAPI allows the creator of the memory handle to specify which nodes are
allowed to access the shared memory region. In some cases this will cause MRAPI to return an error
code if the request cannot be satisfied. An example of this would be the IBM Cell processor in which the
main core and the dedicated processing engines do not have access to physically shared memory.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 70 of 160

3.4.1.1 MRAPI SHMEM_CREATE

NAME

mrapi_shmem_create

SYNOPSIS

#include <mrapi.h>

mrapi_shmem_hndl_t mrapi_shmem_create(

 MRAPI_IN mrapi_shmem_id_t shmem_id,

 MRAPI_IN mrapi_uint_t size,

 MRAPI_IN mrapi_node_t* nodes,

 MRAPI_IN mrapi_uint_t nodes_size,

 MRAPI_IN mrapi_shmem_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function creates a shared memory segment. The size parameter specifies the size of the

shared memory region in bytes. Unless you want the defaults, attributes must be set before the call
to mrapi_shmem_create(). A list of nodes that can access the shared memory can be passed in

the nodes parameter and nodes_size should contain the number of nodes in the list. If nodes is

NULL, then all nodes will be allowed to access the shared memory. Once a shared memory
segment has been created, its attributes may not be changed. If the attributes parameter is

NULL, then implementation-defined default attributes will be used. In the case where the shared
memory segment already exists, status will be set to MRAPI_EXISTS and the handle returned will

not be a valid handle. If shmem_id is set to MRAPI_SHMEM_ID_ANY, then MRAPI will choose an

internal id for you. All nodes in the nodes list must be initialized nodes in the system.

RETURN VALUE

On success a shared memory segment handle is returned, the address is filled in and *status is

set to MRAPI_SUCCESS. On error, *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_SHMEM_ID_INVALID The shmem_id is not a valid shared memory segment

id.

MRAPI_ERR_SHM_NODES_INCOMPAT The list of nodes is not compatible for setting up shared
memory.

MRAPI_ERR_SHM_EXISTS This shared memory segment is already created.

MRAPI_ERR_MEM_LIMIT No memory available.

MRAPI_ERR_NODE_NOTINIT The calling node is not initialized or one of the nodes in
the list of nodes to share with is not initialized.

MRAPI_ERR_PARAMETER Incorrect size, attributes, attribute_size, or

nodes_size parameter.

NOTE

SEE ALSO

See mrapi_shmem_init_attributes() and mrapi_shmem_set_attribute().

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 71 of 160

3.4.1.2 MRAPI_SHMEM_INIT_ATTRIBUTES

NAME

mrapi_shmem_init_attributes

SYNOPSIS

#include <mrapi.h>

void mrapi_shmem_init_attributes(

 MRAPI_OUT mrapi_shmem_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Unless you want the defaults, this call must be used to initialize the values of an
mrapi_shmem_attributes_t structure prior to mrapi_shmem_set_attribute(). You would

then use mrapi_shmem_set_attribute() to change any default values prior to calling

mrapi_shmem_create().

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_PARAMETER Invalid attributes parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 72 of 160

3.4.1.3 MRAPI_SHMEM_SET_ATTRIBUTE

NAME

mrapi_shmem_set_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_shmem_set_attribute(

 MRAPI_OUT mrapi_shmem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function is used to change default values of an mrapi_shmem_attributes_t data structure

prior to calling mrapi_shmem_create(). If the user wants to control which physical memory is

used, then that is done by setting the MRAPI_SHMEM_RESOURCE attribute to the resource in the

metadata tree. The user would first need to call mrapi_resources_get() and then iterate over

the tree to find the desired resource (see the example use case for more details).

MRAPI-defined shared memory attributes:

Attribute num Description Data Type Default

MRAPI_SHMEM_RESOURCE The physical
memory resource in
the metadata
resource tree that
the memory should
be allocated from.

mrapi_resource_t MRAPI_SHMEM_ANY

MRAPI_SHMEM_ADDRESS The requested
address for a
shared memory
region

mrapi_uint_t MRAPI_SHMEM_ADD

R_ANY

MRAPI_DOMAIN_SHARED Indicates whether or
not this remote
memory is
shareable across
domains.

mrapi_boolean_t MRAPI_TRUE

MRAPI_SHMEM_SIZE Returns the size of
the shared memory
segment in bytes.
This attribute can
only be set through
the size parameter
passed in to create.

mrapi_size_t No default.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 73 of 160

Attribute num Description Data Type Default

MRAPI_SHMEM_ADDRESS if
MRAPI_SHMEM_ANY

then not

necessarily

contiguous, if

<address> then

contiguous; non-

contiguous

should be used

with care and will

not work in

contexts that

cannot handle

virtual memory

mrapi_addr_t MRAPI_SHMEM_ANY

_CONTIGUOUS

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_ATTR_READONLY Attribute cannot be modified.

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 74 of 160

3.4.1.4 MRAPI_SHMEM_GET_ATTRIBUTE

NAME

mrapi_shmem_get_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_shmem_get_attribute(

 MRAPI_IN mrapi_shmem_hndl_t shmem,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Returns the attribute that corresponds to the given attribute_num for this shared memory. The

attributes may be viewed but may not be changed (for this shared memory).

RETURN VALUE

On success *status is set to MRAPI_SUCCESS and the attribute value is filled in. On error,

*status is set to the appropriate error defined below and the attribute value is undefined. The

attribute identified by the attribute_num is returned in the void* attribute parameter.

ERRORS

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_SHM_INVALID Argument is not a valid shmem handle.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_shmem_set_attribute() for a list of pre-defined attribute numbers.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 75 of 160

3.4.1.5 MRAPI_SHMEM_GET

NAME

mrapi_shmem_get

SYNOPSIS

#include <mrapi.h>

mrapi_shmem_hndl_t mrapi_shmem_get(

 MRAPI_IN mrapi_shmem_id_t shmem_id,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Given a shmem_id this function returns the MRAPI handle for referencing that shared memory

segment.

RETURN VALUE

On success the shared memory segment handle is returned and *status is set to

MRAPI_SUCCESS. On error, *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_SHMEM_ID_INVALID The shmem_id is not a valid shared memory id or it

was called with shmem_id set to

MRAPI_SHMEM_ID_ANY.

MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.

MRAPI_ERR_SHM_NODE_NOTSHARED This shared memory is not shareable with the calling
node. Which nodes it is shareable with was specified
on the call to mrapi_shmem_create().

MRAPI_ERR_DOMAIN_NOTSHARED This resource cannot be shared by this domain.

NOTE

Shared memory is the only MRAPI primitive that is always shareable across domains. Which nodes
it is shared with is specified in the call to mrapi_shmem_create().

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 76 of 160

3.4.1.6 MRAPI_SHMEM_ATTACH

NAME

mrapi_shmem_attach

SYNOPSIS

#include <mrapi.h>

void* mrapi_shmem_attach(

 MRAPI_IN mrapi_shmem_hndl_t shmem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function attaches the caller to the shared memory segment and returns its address.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_SHM_INVALID Argument is not a valid shared memory segment handle.

MRAPI_ERR_SHM_ATTACHED The calling node is already attached to the shared memory.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 77 of 160

3.4.1.7 MRAPI_SHMEM_DETACH

NAME

mrapi_shmem_detach

SYNOPSIS

#include <mrapi.h>

void mrapi_shmem_detach(

 MRAPI_IN mrapi_shmem_hndl_t shmem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function detaches the caller from the shared memory segment. All nodes must detach before
any node can delete the memory.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_SHMEM_INVALID Argument is not a valid shared memory segment handle.

MRAPI_ERR_SHM_NOTATTACHED The calling node is not attached to the shared memory.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 78 of 160

3.4.1.8 MRAPI_SHMEM_DELETE

NAME

mrapi_shmem_delete

SYNOPSIS

#include <mrapi.h>

void mrapi_shmem_delete(

 MRAPI_IN mrapi_shmem_hndl_t shmem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function deletes the shared memory segment if there are no nodes still attached to it. All nodes
must detach before any node can delete the memory. Otherwise, delete will fail and there are no
automatic retries nor deferred delete.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_SHM_INVALID Argument is not a valid shared memory segment handle.

MRAPI_ERR_SHM_ATTCH There are nodes still attached to this shared memory segment
thus it could not be deleted.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 79 of 160

3.4.2 Remote Memory

The Remote Memory API’s allow buffers in separate memory subsystems that are not directly
accessible to be shared buffers. This can be accomplished if either CPU can see both memory regions,
or if a DMA engine can provide a data path to move the memory, or through some other form of
communication that can perform the data transfer. These methods can optionally include a software
cache.

If a CPU in the system can see both memory regions, then it can directly perform the memory transfers
between memory spaces. A remote CPU node may not have access and must request the CPU that
has access to perform any synchronization requests.

In a DMA transfer method, the DMA must have access to both memory regions. This entails set up of
the buffer to be initially transferred between memory regions. The initial buffer and the copy are ready
for access by either node. DMA can be used independently of a software cache or in conjunction with a
software cache.

A software cache is similar to a hardware cache, and gives the ability to synchronize between different
CPU’s accessing the same memory structure which makes the accesses by both CPU’s coherent. For
example, when any write access is performed on a remote memory buffer, the result can be
immediately stored in the software cache. If another CPU does a read or write access to the same
region of the buffer, the software cache must communicate between CPU’s and synchronize the buffer
between remote memory regions prior to performing the buffer access. A sync command will force the
remotely shared memory region to be synchronized.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 80 of 160

3.4.2.1 MRAPI_RMEM_CREATE

NAME

mrapi_rmem_create

SYNOPSIS

#include <mrapi.h>

mrapi_rmem_hndl_t mrapi_rmem_create(

 MRAPI_IN mrapi_rmem_id_t rmem_id,

 MRAPI_IN void* mem,

 MRAPI_IN mrapi_rmem_atype_t access_type,

 MRAPI_IN mrapi_rmem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function promotes a private or shared memory segment on the calling node to a remote
memory segment and returns a handle. The mem parameter is a pointer to the base address of the

local memory buffer (see Section 2.4.2). Once a memory segment has been created, its attributes
may not be changed. If the attributes are NULL, then implementation-defined default attributes will
be used. If rmem_id is set to MRAPI_RMEM_ID_ANY, then MRAPI will choose an internal id.

access_type specifies access semantics. Access semantics are per remote memory buffer

instance, and are either strict (meaning all clients must use the same access type), or any (meaning
that clients may use any type supported by the MRAPI implementation). Implementations may
define multiple access types (depending on underlying silicon capabilities), but must provide at
minimum: MRAPI_RMEM_ATYPE_ANY (which indicates any semantics), and

MRAPI_RMEM_ATYPE_DEFAULT, which has strict semantics Note that MRAPI_RMEM_ATYPE_ANY is

only valid for remote memory buffer creation, clients must use MRAPI_RMEM_ATYPE_DEFAULT or

another specific type of access mechanism provided by the MRAPI implementation (DMA, etc.)
Specifying any type of access (even default) other than MRAPI_RMEM_ATYPE_ANY forces strict

mode. The access type is explicitly passed in to create rather than being an attribute because it is
so system specific, there is no easy way to define an attribute with a default value.

RETURN VALUE

On success a remote memory segment handle is returned, the address is filled in and *status is

set to MRAPI_SUCCESS. On error, *status is set to the appropriate error defined below. In the

case where the remote memory segment already exists, status will be set to MRAPI_EXISTS and

the handle returned will not be a valid handle.

ERRORS

MRAPI_ERR_RMEM_ID_INVALID The rmem_id is not a valid remote memory segment id.

MRAPI_ERR_RMEM_EXISTS This remote memory segment is already created.

MRAPI_ERR_MEM_LIMIT No memory available.

MRAPI_ERR_RMEM_TYPENOTVALID Invalid access_type parameter

MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.

MRAPI_ERR_PARAMETER Incorrect attributes, rmem, or size parameter.

MRAPI_ERR_RMEM_CONFLICT The memory pointer + size collides with another remote
memory segment.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 81 of 160

NOTE

This function is for promoting a segment of local memory (heap or stack, but stack would be
dangerous and should be done with care) or an already created shared memory segment to rmem,
but that also should be done with care.

SEE ALSO

See mrapi_rmem_init_attributes() and mrapi_rmem_set_attribute().

See data types identifiers discussion: Section 2.11.13, access types: Section 2.4.2.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 82 of 160

3.4.2.2 MRAPI_RMEM_INIT_ATTRIBUTES

NAME

mrapi_rmem_init_attributes

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_init_attributes(

 MRAPI_OUT mrapi_rmem_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Unless you want the defaults, this call must be used to initialize the values of an
mrapi_rmem_attributes_t structure prior to mrapi_rmem_set_attribute(). You would

then use mrapi_rmem_set_attribute() to change any default values prior to calling

mrapi_rmem_create().

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_PARAMETER Invalid attributes parameter

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 83 of 160

3.4.2.3 MRAPI_RMEM_SET_ATTRIBUTE

NAME

mrapi_rmem_set_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_set_attribute(

 MRAPI_OUT mrapi_rmem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function is used to change default values of an mrapi_rmem_attributes_t data structure

prior to calling mrapi_rmem_create().

MRAPI-defined remote memory attributes:

Attribute num Description Data Type Default

MRAPI_DOMAIN_SHARED Indicates whether or
not this remote
memory is shareable
across domains.

mrapi_boolean_t MRAPI_TRUE

RETURN VALUE

On success *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_ATTR_READONLY Attribute cannot be modified.

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 84 of 160

3.4.2.4 MRAPI_RMEM_GET_ATTRIBUTE

NAME

mrapi_rmem_get_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_get_attribute(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Returns the attribute that corresponds to the given attribute_num for this remote memory. The

attributes may be viewed but may not be changed (for this remote memory).

RETURN VALUE

On success *status is set to MRAPI_SUCCESS and the attribute value is filled in. On error,

*status is set to the appropriate error defined below and the attribute value is undefined. The

attribute identified by the attribute_num is returned in the void* attribute parameter.

ERRORS

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory handle.

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_rmem_set_attribute() for a list of pre-defined attribute numbers.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 85 of 160

3.4.2.5 MRAPI_RMEM_GET

NAME

mrapi_rmem_get

SYNOPSIS

#include <mrapi.h>

mrapi_rmem_hndl_t mrapi_rmem_get(

MRAPI_IN mrapi_rmem_id_t rmem_id,

 MRAPI_IN mrapi_rmem_atype_t access_type,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

Given a rmem_id, this function returns the MRAPI handle referencing to that remote memory

segment. access_type specifies access semantics. Access semantics are per remote memory

buffer instance, and are either strict (meaning all clients must use the same access type), or any
(meaning that clients may use any type supported by the MRAPI implementation). Implementations
may define multiple access types (depending on underlying silicon capabilities), but must provide at
minimum: MRAPI_RMEM_ATYPE_ANY (which indicates any semantics), and

MRAPI_RMEM_ATYPE_DEFAULT, which has strict semantics Note that MRAPI_RMEM_ATYPE_ANY is

only valid for remote memory buffer creation, clients must use MRAPI_RMEM_ATYPE_DEFAULT or

another specific type of access mechanism provided by the MRAPI implementation (DMA, etc.) The
access type must match the access type that the memory was created with unless the memory was
created with the MRAPI_RMEM_ATYPE_ANY type. See Section 2.4.2 for a discussion of remote

memory access types.

RETURN VALUE

On success the remote memory segment handle is returned and *status is set to

MRAPI_SUCCESS. On error, *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_RMEM_ID_INVALID The rmem_id parameter does not refer to a valid remote

memory segment or it was called with rmem_id set to

MRAPI_RMEM_ID_ANY.

MRAPI_ERR_RMEM_ATYPE_INVALID Invalid access_type parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not initialized.

MRAPI_ERR_DOMAIN_NOTSHARED This resource cannot be shared by this domain.

MRAPI_ERR_RMEM_ATYPE Type specified on attach is incompatible with type
specified on create.

NOTE

SEE ALSO

mrapi_rmem_set_attribute(),access types: Section 2.4.2

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 86 of 160

3.4.2.6 MRAPI_RMEM_ATTACH

NAME

mrapi_rmem_attach

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_attach(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function attaches the caller to the remote memory segment. Once this is done, the caller may
use the mrapi_rmem_read() and mrapi_rmem_write() functions. The caller should call

mrapi_rmem_detach() when finished using the remote memory.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_ATTACHED The calling node is already attached to the remote memory.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

Section 2.4.2

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 87 of 160

3.4.2.7 MRAPI_RMEM_DETACH

NAME

mrapi_rmem_detach

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_detach(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function detaches the caller from the remote memory segment. All attached nodes must detach
before any node can delete the memory.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_NOTATTACHED The caller is not attached to the remote memory.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 88 of 160

3.4.2.8 MRAPI_RMEM_DELETE

NAME

mrapi_rmem_delete

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_delete(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function demotes the remote memory segment. All attached nodes must detach before the
node can delete the memory. Otherwise, delete will fail and there are no automatic retries nor
deferred delete. Note that memory is not de-allocated it is just no longer accessible via the MRAPI
remote memory function calls. Only the node that created the remote memory can delete it.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_ATTACH Unable to demote the remote memory because other nodes
are still attached to it.

MRAPI_ERR_RMEM_NOTOWNER The calling node is not the one that created the remote
memory.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 89 of 160

3.4.2.9 MRAPI_RMEM_READ

NAME

mrapi_rmem_read

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_read(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint32_t rmem_offset,

 MRAPI_OUT void* local_buf,

 MRAPI_IN size_t local_buf_size,

 MRAPI_IN mrapi_uint32_t local_offset,

 MRAPI_IN mrapi_uint32_t bytes_per_access,

MRAPI_IN mrapi_uint32_t num_strides,

 MRAPI_IN mrapi_uint32_t rmem_stride,

 MRAPI_IN mrapi_uint32_t local_stride,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function performs num_strides memory reads, where each read is of size

bytes_per_access bytes. The i-th read copies bytes_per_access bytes of data from rmem

with offset rmem_offset + i*rmem_stride to local_buf with offset local_offset +

i*local_stride, where 0 <= i < num_strides. The local_buf_size represents the number of

bytes in the local_buf.

This supports scatter/gather type accesses. To perform a single read, without the need for
scatter/gather, set the num_strides parameter to 1.

This routine blocks until memory can be read.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_BUFF_OVERRUN rmem_offset + (rmem_stride * num_strides)

would fall out of bounds of the remote memory buffer.

MRAPI_ERR_RMEM_STRIDE num_strides>1 and rmem_stride and/or

local_stride are less than bytes_per_access.

MRAPI_ERR_RMEM_NOTATTACHED The caller is not attached to the remote memory.

MRAPI_ERR_PARAMETER Either the local_buf is invalid or the buf_size is zero or

bytes_per_access is zero.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 90 of 160

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 91 of 160

3.4.2.10 MRAPI_RMEM_READ_I

NAME

mrapi_rmem_read_i

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_read_i(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint32_t rmem_offset,

 MRAPI_OUT void* local_buf,

 MRAPI_IN mrapi_uint32_t local_offset,

 MRAPI_IN mrapi_uint32_t bytes_per_access,

MRAPI_IN mrapi_uint32_t num_strides,

 MRAPI_IN mrapi_uint32_t rmem_stride,

 MRAPI_IN mrapi_uint32_t local_stride,

 MRAPI_OUT mrapi_request_t* mrapi_request,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This (non-blocking) function performs num_strides memory reads, where each read is of size

bytes_per_access bytes. The i-th read copies bytes_per_access bytes of data from rmem

with offset rmem_offset + i*rmem_stride to local_buf with offset local_offset +

i*local_stride, where 0 <= i < num_strides. The buffer state is undefined until the non-

blocking operation completes.

This supports scatter/gather type accesses. To perform a single read, without the need for
scatter/gather, set the num_strides parameter to 1.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. Use mrapi_test(), mrapi_wait() or mrapi_wait_any() to test for

completion of the operation.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 92 of 160

ERRORS

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_BUFF_OVERRUN rmem_offset + (rmem_stride * num_strides)

would fall out of bounds of the remote memory buffer.

MRAPI_ERR_RMEM_STRIDE num_strides>1 and rmem_stride and/or

local_stride are less than bytes_per_access.

MRAPI_ERR_REQUEST_LIMIT No more request handles available.

MRAPI_ERR_RMEM_NOTATTACHED The caller is not attached to the remote memory.

MRAPI_ERR_RMEM_BLOCKED We have hit a hardware limit of the number of
asynchronous DMA/cache operations that can be pending
("in flight") simultaneously. Thus we now have to block
because the resource is busy.

MRAPI_ERR_PARAMETER Either the local_buf is invalid or the buf_size is zero or

bytes_per_access is zero.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 mrapi_test(), mrapi_wait(), mrapi_wait_any()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 93 of 160

3.4.2.11 MRAPI_RMEM_WRITE

NAME

mrapi_rmem_write

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_write(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint32_t rmem_offset,

 MRAPI_IN void* local_buf,

 MRAPI_IN mrapi_uint32_t local_offset,

 MRAPI_IN mrapi_uint32_t bytes_per_access,

MRAPI_IN mrapi_uint32_t num_strides,

 MRAPI_IN mrapi_uint32_t rmem_stride,

 MRAPI_IN mrapi_uint32_t local_stride,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function performs num_strides memory writes, where each write is of size

bytes_per_access bytes. The i-th write copies bytes_per_access bytes of data from

local_buf with offset local_offset + i*local_stride to rmem with offset rmem_offset +

i*rmem_stride, where 0 <= i < num_strides.

This supports scatter/gather type accesses. To perform a single write, without the need for
scatter/gather, set the num_strides parameter to 1.

This routine blocks until memory can be written.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_BUFF_OVERRUN rmem_offset + (rmem_stride * num_strides)

would fall out of bounds of the remote memory buffer.

MRAPI_ERR_RMEM_STRIDE num_strides>1 and rmem_stride and/or

local_stride are less than bytes_per_access.

MRAPI_ERR_RMEM_NOTATTACHED The caller is not attached to the remote memory.

MRAPI_ERR_PARAMETER Either the local_buf is invalid or bytes_per_access is

zero.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 94 of 160

3.4.2.12 MRAPI_RMEM_WRITE_I

NAME

mrapi_rmem_write_i

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_write_i(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint32_t rmem_offset,

 MRAPI_IN void* local_buf,

 MRAPI_IN mrapi_uint32_t local_offset,

 MRAPI_IN mrapi_uint32_t bytes_per_access,

MRAPI_IN mrapi_uint32_t num_strides,

 MRAPI_IN mrapi_uint32_t rmem_stride,

 MRAPI_IN mrapi_uint32_t local_stride,

 MRAPI_OUT mrapi_request_t* mrapi_request,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This (non-blocking) function performs num_strides memory writes, where each write is of size

bytes_per_access bytes. The i-th write copies bytes_per_access bytes of data from

local_buf with offset local_offset + i*local_stride to rmem with offset rmem_offset +

i*rmem_stride, where 0 <= i < num_strides. The write is not complete until indicated by the

mrapi_request parameter.

This supports scatter/gather type accesses. To perform a single write, without the need for
scatter/gather, set the num_strides parameter to 1.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below. Use mrapi_test(), mrapi_wait() or mrapi_wait_any() to test for

completion of the operation.

ERRORS

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_BUFF_OVERRUN rmem_offset + (rmem_stride * num_strides)

would fall out of bounds of the remote memory buffer.

MRAPI_ERR_RMEM_STRIDE num_strides>1 and rmem_stride and/or

local_stride are less than bytes_per_access.

MRAPI_ERR_REQUEST_LIMIT No more request handles available.

MRAPI_ERR_RMEM_NOTATTACHED The caller is not attached to the remote memory.

MRAPI_ERR_RMEM_BLOCKED We have hit a hardware limit of the number of

asynchronous DMA/cache operations that can be

pending ("in flight") simultaneously. Thus we now

have to block because the resource is busy.

MRAPI_ERR_PARAMETER Either the local_buf is invalid or bytes_per_access is

zero.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 95 of 160

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 mrapi_test(), mrapi_wait(), mrapi_wait_any()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 96 of 160

3.4.2.13 MRAPI_RMEM_FLUSH

NAME

mrapi_rmem_flush

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_flush(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function flushes the remote memory. Support for this function is optional and on some
systems this may not be supportable. However, if an implementation wants to support coherency
back to main backing store then this is the way to do it. Note, that this is not an automatic synch
back to other viewers of the remote data and they would need to also perform a synch, so it is
‘application managed’ coherency. If writes are synchronizing, then a flush will be a no-op.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_NOT_SUPPORTED The flush call is not supported

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_NOTATTACHED The caller is not attached to the remote memory.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 97 of 160

3.4.2.14 MRAPI_RMEM_SYNC

NAME

mrapi_rmem_sync

SYNOPSIS

#include <mrapi.h>

void mrapi_rmem_sync(

 MRAPI_IN mrapi_rmem_handle_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

This function synchronizes the remote memory. This function provides application managed
coherency. It does not guarantee that all clients of the rmem buffer will see the updates, see
corresponding mrapi_rmem_flush(). For some underlying hardware this may not be possible.

MRAPI implementation can return an error if the synch cannot be performed.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_NOT_SUPPORTED The synch call is not supported

MRAPI_ERR_RMEM_INVALID Argument is not a valid remote memory segment handle.

MRAPI_ERR_RMEM_NOTATTACHED The caller is not attached to the remote memory.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 98 of 160

3.5 Non-Blocking Operations

The MRAPI provides both blocking and non-blocking versions of communication functions that may be
delayed because the implementation requires synchronization between multiple nodes. The non-
blocking version of functions is denoted by an _i() suffix. For example, the mrapi_rmem_write()

function copies a data buffer from local memory to a remote shared memory buffer. Since the data copy
operation might take many cycles, MRAPI also provides mrapi_rmem_write_i() function, which

initiates the DMA operation and returns immediately. Like all non-blocking functions,
mrapi_rmem_write_i() fills in a mrapi_request_t object before returning.

The mrapi_request_t object provides a unique identifier for each in-flight non-blocking operation.

These 'request handles' can be passed to the mrapi_test(), mrapi_wait(), or

mrapi_wait_any() methods in order to find out when the non-blocking operation has completed.

When one of these API calls determines that a non-blocking request has finished, it returns indicating
completion and fills in an mrapi_status_t object to indicate why the request completed. The status

object contains an error code indicating whether the operation finished successfully or was terminated
because of an error. The mrapi_request_t is an opaque data type and the user should not attempt

to examine it.

Non-blocking operations may consume system resources until the programmer confirms completion by
calling mrapi_test(), mrapi_wait(), or mrapi_wait_any(). Thus, the programmer should be

sure to confirm completion of every non-blocking operation via these APIs. Alternatively, an in-flight
operation can be cancelled by calling mrapi_cancel(). This function forces the operations specified

by the mrapi_request_t object to stop immediately, releasing any system resources allocated in

order to perform the operation.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 99 of 160

3.5.1 MRAPI_TEST

NAME

mrapi_test

SYNOPSIS

#include <mrapi.h>

mrapi_boolean_t mrapi_test(

 MRAPI_IN mrapi_request_t* request,

 MRAPI_OUT size_t* size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_test() checks if a non-blocking operation has completed. The function returns in a timely

fashion. request is the identifier for the non-blocking operation. The size parameter is not

currently used but is there to align with MCAPI.

RETURN VALUE

On success, MRAPI_TRUE is returned and *status is set to MRAPI_SUCCESS. If the operation has

not completed MRAPI_FALSE is returned and *status is set to MRAPI_INCOMPLETE. On error,

MRAPI_FALSE is returned and *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_REQUEST_INVALID Argument is not a valid request handle.

MRAPI_ERR_REQUEST_CANCELED The request was canceled.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 100 of 160

3.5.2 MRAPI_WAIT

NAME

mrapi_wait

SYNOPSIS

#include <mrapi.h>

mrapi_boolean_t mrapi_wait(

 MRAPI_IN mrapi_request_t* request,

 MRAPI_OUT size_t* size,

 MRAPI_IN mrapi_timeout_t timeout,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_wait() waits until a non-blocking operation has completed. It is a blocking function and

returns when the operation has completed, has been canceled, or a timeout has occurred.
request is the identifier for the non-blocking operation. The size parameter is not currently used

but is there to align with MCAPI.

RETURN VALUE

On success MRAPI_TRUE is returned and status is set to MRAPI_SUCCESS. On error

MRAPI_FALSE is returned and *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_REQUEST_INVALID Argument is not a valid request handle.

MRAPI_ERR_REQUEST_CANCELED The request was canceled.

MRAPI_TIMEOUT The operation timed out.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 101 of 160

3.5.3 MRAPI_WAIT_ANY

NAME

mrapi_wait_any

SYNOPSIS

#include <mrapi.h>

mrapi_uint_t mrapi_wait_any(

 MRAPI_IN size_t num_requests,

 MRAPI_IN mrapi_request_t* requests,

 MRAPI_OUT size_t* size,

 MRAPI_IN mrapi_timeout_t timeout ,

MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_wait_any() waits until any non-blocking operation of a list has completed. It is a blocking

function and returns the index into the requests array (starting from 0) indicating which of any

outstanding operation has completed. If more than one request has completed, it will return the first
one it finds. number is the number of requests in the array. requests is the array of

mrapi_request_t identifiers for the non-blocking operations. The size parameter is not currently

used but is there to align with MCAPI.

RETURN VALUE

On success, returns the index into the requests array of the mrapi_request_t identifier that has

completed or has been canceled is returned and *status is set to MRAPI_SUCCESS. On error, -1

is returned and *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_REQUEST_INVALID Argument is not a valid request handle.

MRAPI_ERR_REQUEST_CANCELED The request was canceled.

MRAPI_TIMEOUT The operation timed out.

MRAPI_ERR_PARAMETER Incorrect number (if=0) requests parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 102 of 160

3.5.4 MRAPI_CANCEL

NAME

mrapi_cancel

SYNOPSIS

#include <mrapi.h>

void mrapi_cancel(

 MRAPI_IN mrapi_request_t* request,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_cancel() cancels an outstanding request. Any pending calls to mrapi_wait() or

mrapi_wait_any() for this request will also be cancelled. The returned status of a canceled

mrapi_wait() or mrapi_wait_any() call will indicate that the request was cancelled. Only the

node that initiated the request may call cancel.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_REQUEST_INVALID Argument is not a valid request handle for this node.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 103 of 160

3.6 Metadata

MRAPI supports the searching and querying of metadata about the host system. The host system has a
set of resources, with each resource having a set of attributes. Each attribute has a value.

A central concept of the MRAPI metadata support is the data structure that represents resources in a
system. A call to mrapi_resources_get() will result in the creation of a data structure in the form of

a tree. The nodes are the resources, and the edges represent scope (not ownership). By navigating the
data structure, the user can locate the resource desired, and then use the
mrapi_resource_get_attribute() function to obtains the value of an attribute. The function

mrapi_resource_tree_free() is used to free the memory used by the data structure. A node can

only see the resources in its domain and a given domain’s scope may change over time if the system is
repartitioned for power, hypervisor, etc.

The source for the MRAPI metadata system resources can be initialized in several ways. Each
implementation upon initialization can obtain resource information from a number of ways, including
from standard information systems like SPIRIT Consortium’s IP-XACT and Linux device trees.

The MRAPI metadata supports dynamic attributes (attributes with values that change in time). MRAPI
supports the ability to start, stop, reset, and query dynamic attributes. Dynamics attributes are optional
and are not required to be supported by an MRAPI implemenation.

MRAPI also supports registering callbacks that are called when an event occurs. Events can include an
attribute exceeding a threshold, or a counter rollover. Callbacks are not required to be supported when
no events are defined by the implementation.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 104 of 160

3.6.1 MRAPI_RESOURCES_GET

NAME

mrapi_resources_get

SYNOPSIS

#include <mrapi.h>

mrapi_resource_t* mrapi_resources_get(

 MRAPI_IN mrapi_rsrc_filter_t subsystem_filter,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_resources_get() returns a tree of system resources available to the calling node, at the

point in time when it is called (this is dynamic in nature). mrapi_resource_get_attribute()

can be used to make a specific query of an attribute of a specific system resource.
subsystem_filter is an enumerated type that is used as a filter indicating the scope of the

desired information MRAPI returns. See Section 2.5.1 for a description of how to navigate the
resource tree as well as Section 5.1 for an example use case.

The valid subsystem filters are:

 MRAPI_RSRC_MEM, MRAPI_RSRC_CACHE, MRAPI_RSRC_CPU

RETURN VALUE

On success, returns a pointer to the root of a tree structure containing the available system
resources, and *status is set to MRAPI_SUCCESS. On error, MRAPI_NULL is returned and

*status is set to the appropriate error defined below. The memory associated with the data

structures returned by this function is system managed and must be released via a call to
mrapi_resource_tree_free().

ERRORS

MRAPI_ERR_RSRC_INVALID_SUBSYSTEM Argument is not a valid subsystem_filter value.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_resource_get_attribute(), Section 2.5.1 and Section 2.11.4

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 105 of 160

3.6.2 MRAPI_RESOURCE_GET_ATTRIBUTE

NAME

mrapi_resource_get_attribute

SYNOPSIS

#include <mrapi.h>

void mrapi_resource_get_attribute(

 MRAPI_IN mrapi_resource_t* resource,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_resource_get_attribute() returns the attribute value at the point in time when this

function is called (the value of an attribute may be dynamic in nature), given the input resource and
attribute number. resource is a pointer to the respective resource, attribute_num is the

number of the attribute to query for that resource, and attribute_size is the size of the attribute.

Resource attributes are read-only. Attribute numbers are assigned by the MRAPI implementation
and are specific to the given resource type (see Section 2.5.1).

The tables below show the valid attribute_nums for each type of resource:

type of mrapi_resource_t = MRAPI_RSRC_MEM

attribute_num: data type:

MRAPI_RSRC_MEM_BASEADDR mrapi_addr_t

MRAPI_RSRC_MEM_WORDSIZE mrapi_uint_t

MRAPI_RSRC_MEM_NUMWORDS mrapi_uint_t

type of mrapi_resource_t = MRAPI_RSRC_CACHE

attribute_num: data type:

MRAPI_RSRC_CACHE_SIZE mrapi_uint_t

MRAPI_RSRC_CACHE_LINE_SIZE mrapi_uint_t

MRAPI_RSRC_CACHE_ASSOCIATIVITY mrapi_uint_t

MRAPI_RSRC_CACHE_LEVEL mrapi_uint_t

type of mrapi_resource_t = MRAPI_RSRC_CPU

attribute_num: data type:

MRAPI_RSRC_CPU_FREQUENCY mrapi_uint_t

MRAPI_RSRC_CPU_TYPE char*

MRAPI_RSRC_CPU_ID mrapi_uint_t

RETURN VALUE

On success *status is set to MRAPI_SUCCESS and the attribute value is filled in. On error,

*status is set to the appropriate error defined below and the attribute value is undefined. The

attribute identified by the attribute_num is returned in the void* attribute parameter.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 106 of 160

ERRORS

MRAPI_ERR_RSRC_INVALID Invalid resource

MRAPI_ERR_ATTR_NUM Unknown attribute number

MRAPI_ERR_ATTR_SIZE Incorrect attribute size

MRAPI_ERR_PARAMETER Invalid attribute parameter.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_resources_get()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 107 of 160

3.6.3 MRAPI_DYNAMIC_ATTRIBUTE_START

NAME

mrapi_dynamic_attribute_start

SYNOPSIS

#include <mrapi.h>

void mrapi_dynamic_attribute_start(

 MRAPI_IN mrapi_resource_t* resource,

 MRAPI_IN mrapi_uint_t attribute_num,

MRAPI_IN void (*rollover_callback) (void),

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_dynamic_attribute_start() sets the system up to begin collection of the attribute’s

value over time. resource is a pointer to the given resource, attribute_num is the number of

the attribute to start monitoring for that resource. Attribute numbers are specific to the given
resource type.

The rollover_callback is an optional function pointer. If supplied the implementation will call

the function when the specified attribute value rolls over from its maximum value. If this callback is
not supplied the attribute will roll over silently.

If you call stop and then start again, the resource will start at its previous value. To reset it, call
mrapi_dynamic_attribute_reset().

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_RSRC_INVALID Invalid resource

MRAPI_ERR_ATTR_NUM Invalid attribute number

MRAPI_ERR_RSRC_NOTDYNAMIC The input attribute is static and not dynamic, and therefore
can’t be started.

MRAPI_ERR_RSRC_STARTED The attribute is dynamic and has already been started

MRAPI_ERR_RSRC_COUNTER_INUSE The counter is currently in use by another node.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_dynamic_attribute_stop(), Section 2.11.4

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 108 of 160

3.6.4 MRAPI_DYNAMIC_ATTRIBUTE_RESET

NAME

mrapi_dynamic_attribute_reset

SYNOPSIS

#include <mrapi.h>

void mrapi_dynamic_attribute_reset(

 MRAPI_IN mrapi_resource_t *resource,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_dynamic_attribute_reset() resets the value of the collected dynamic attribute.

resource is the given resource, attribute_num is the number of the attribute to reset. Attribute

numbers are specific to a given resource type.

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_RSRC_INVALID Invalid resource

MRAPI_ERR_ATTR_NUM Invalid attribute number

MRAPI_ERR_RSRC_NOTDYNAMIC The input attribute is static and not dynamic, and therefore
can’t be reset.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

Some dynamic attributes do not have a defined reset value. In this case, calling
mrapi_dynamic_attribute_reset() has no effect.

SEE ALSO

Section 2.5.1

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 109 of 160

3.6.5 MRAPI_DYNAMIC_ATTRIBUTE_STOP

NAME

mrapi_dynamic_attribute_stop

SYNOPSIS

#include <mrapi.h>

void mrapi_dynamic_attribute_stop(

 MRAPI_IN mrapi_resource_t* resource,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_dynamic_attribute_stop() stops the system from collecting dynamic attribute values.

resource is the given resource, attribute_num is the number of the attribute to stop monitoring.

Attribute numbers are specific to a given resource type. If you call stop and then start again, the
resource will start at its previous value. To reset it, call mrapi_dynamic_attribute_reset().

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS. On error, *status is set to the appropriate error

defined below.

ERRORS

MRAPI_ERR_RSRC_INVALID Invalid resource

MRAPI_ERR_ATTR_NUM Invalid attribute number

MRAPI_ERR_RSRC_NOTDYNAMIC The input attribute is static and not dynamic, and therefore
can’t be stopped.

MRAPI_ERR_RSRC_NOTSTARTED The attribute is dynamic and has not been started by the
calling node.

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

mrapi_dynamic_attribute_start()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 110 of 160

3.6.6 MRAPI_RESOURCE_REGISTER_CALLBACK

NAME

mrapi_resource_register_callback

SYNOPSIS

#include <mrapi.h>

void mrapi_resource_register_callback(

 MRAPI_IN mrapi_event_t event,

 MRAPI_IN unsigned int frequency,

 MRAPI_IN void (*callback_function) (mrapi_event_t event),

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_register_callback() registers an application-defined function to be called when a

specific system event occurs. The set of available events is implementation-defined. Some
implementations may choose not to define any events and thus not to support this functionality. The
frequency parameter is used to indicate the reporting frequency for which an event should trigger

the callback (frequency is specified in terms of number of event occurrences, e.g., callback on every
nth occurrence where n=frequency). An example usage of

mrapi_register_callback() could be for notification when the core experiences a power

management event so that the application can determine the cause (manual or automatic) and/or
the level (nap, sleep, or doze, etc.), and use this information to adjust resource usages.

RETURN VALUE

On success, the callback_function() will be registered for the event, and *status is set to

MRAPI_SUCCESS. On error, *status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_RSRC_INVALID_EVENT Invalid event

MRAPI_ERR_RSRC_INVALID_CALLBACK Invalid callback function

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 111 of 160

3.6.7 MRAPI_RESOURCE_TREE_FREE

NAME

mrapi_resource_tree_free

SYNOPSIS

#include <mrapi.h>

void mrapi_resource_tree_free(

 mrapi_resource_t* MRAPI_IN* root,

 MRAPI_OUT mrapi_status_t* status

);

DESCRIPTION

mrapi_resource_tree_free() frees the memory in a resource tree. root is the root of a

resource tree originally obtained from a call to mrapi_resources_get().

RETURN VALUE

On success, *status is set to MRAPI_SUCCESS and root will be set to MRAPI_NULL. On error,

*status is set to the appropriate error defined below.

ERRORS

MRAPI_ERR_RSRC_INVALID_TREE Invalid resource tree

MRAPI_ERR_RSRC_NOTOWNER The calling node is not the same node that originally
called mrapi_resources_get().

MRAPI_ERR_NODE_NOTINIT The calling node is not intialized.

NOTE

Subsequent usage of root will give undefined results.

SEE ALSO

mrapi_resources_get()

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 112 of 160

3.7 Convenience Functions

MRAPI supports a convenience function for displaying the status parameter.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 113 of 160

3.7.1 MRAPI_DISPLAY_STATUS

NAME

mrapi_display_status

SYNOPSIS

#include <mrapi.h>

char* mrapi_display_status(

 MRAPI_IN mrapi_status_t mrapi_status,

 MRAPI_OUT char* status_message,

 MRAPI_IN size_t size

);

DESCRIPTION

mrapi_display_status() formats the status parameter as a string by copying it into the user

supplied buffer: status_message.

RETURN VALUE

MRAPI_TRUE is returned on success, otherwise MRAPI_FALSE is returned. If the status is an

unknown status, status_message will be set to UNKNOWN.

ERRORS

NONE DEFINED N/A

NOTE

SEE ALSO

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 114 of 160

4. FAQ

Q: Is a reference implementation available? What is the intended purpose of the reference
implementation?

A: A reference implementation is planned in the future. The current plan is to receive feedback on the
draft specification and make modifications based upon the feedback. When the specification is near
finalization, the MRAPI working group will announce the plans and schedule for such an
implementation. The reference implementation models the functionality of the specification and does not
intend to be a high-performance implementation.

Q: Can you elaborate on how hardware accelerators will interact with embedded processors using
MRAPI? An API is a library of C/C++ functions, but it is not clear how an API can be used with a
hardware accelerator, which can be very application-specific.

A: The API can be implemented on top of a hardware accelerator. For example, an SoC may have
hardware acceleration for mutexes, in which case an MRAPI implementation could use that hardware
accelerator without the programmer needing to know how to interact with it directly.

Q: Does the API have test cases?

A: The API itself does not have test cases. However, as with the MCAPI example implementation which
is available from the Multicore Association, we would expect an MRAPI example implementation to
contain test cases.

Q: Do you have implementations of the API that can be tested by the reviewers?

A: We are hoping to publish an example implementation along with the spec.

Q: I assume MRAPI relies on a "local" resource manager. That is, MRAPI must store state, and so
needs a way to allocate state storage. Is this correct?

A: It is up to the MRAPI implementation as to how resources are managed. Our simple initial
implementation stores state in shared memory protected with a semaphore.

Q: I saw a statement that other solutions are too heavyweight because they target distributed systems.
Does it mean that your goal is not to target the distributed system? What happens if we have a multichip
multicore system? Isn't this the same as a distributed system?

A: MRAPI targets cores on a chip, and chips on a board. MRAPI is not intended to scale beyond that
scope.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 115 of 160

Q: Is it possible to hide the differences between local and remote memory?

A: The working group has considered the possibility of allowing the promotion of local memory to remote
memory, and then allowing all memory accesses to occur through the API. This would effectively hide
the difference, but at a performance cost. For now, this is a deferred feature.

Q: In many hardware systems, transitions between low power (or no power) and fully working conditions
are extremely frequent. In such systems, some state-change callbacks will become a nightmare. How
are you planning to handle the situation?

A: If an application does not want to be disturbed by frequent callbacks, the application can periodically
poll MRAPI at a time of its own choosing. This is certainly possible with MRAPI.

Q: What is the idea of API asking for hardware accelerators if these accelerators are actually powered
off because of inactivity?

A: In such a scenario, the application would determine that there was no acceleration available and
would have to find an alternative means to perform its work, perhaps by executing code on the CPU.

Q: Are there any plans to include trigger APIs? For example, invoke callback when a particular resource
hits some pre-defined conditions or threshold?

A: Currently there are no threshold-related callbacks other than counter wrap-arounds. MRAPI may
consider this for a future version.

Q: Did you consider including Read Copy Update (RCU) locks?

A: The MRAPI working group did consider RCU locks. After discussion with some of the original
creators of the RCU code for Linux, we determined that, for now, there is not sufficient evidence that a
high-performance, user-level implementation of RCU was feasible. We intend to monitor developments
in this area because we are aware that it is an active area of research.

Q: These primitives are necessary, but seem to be insufficient. I would think that the goal of MRAPI
would include the ability to write a resource manager that any application using MRAPI could plug into.
That implies that at a minimum: resource enumerations should be standardized, or a mechanism for
self-describing enumerations be created.

A: MRAPI is intended to provide some of the primitives that could be used for creating a higher-level
resource manager. However, it is also intended to be useful for application-level programmers to write
multicore code, and for this reason it was kept minimal and orthogonal to other Multicore Association
APIs. The working group believes that a full-featured resource manager would require all of the
Multicore Association APIs, e.g., MCAPI, MRAPI, and MTAPI.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 116 of 160

Q: Are any companies currently incorporating or have plans to incorporate MRAPI in their products. If
so, can you name the products?

A: At this time, there have been no public announcements. There is at least one university research
project that is looking at MRAPI for heterogeneous multicore computing. We expect more activities to
emerge after the specification is officially released.

Q: Is MRAPI planned to be processor-agnostic?

A: Yes, that is the plan.

Q: Is MRAPI dependent on any other resource management standards and/or approaches?

A: No, there should be no such dependencies in MRAPI.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 117 of 160

5. Use Cases

5.1 Simple Example of Creating Shared Memory Using Metadata

This use case illustrates how a user would control which shared physical memory is allocated by
walking a filtered resource tree and selecting a particular memory resource. The default is to allow the
system to control where shared memory is allocated from.

mrapi_status_t status;

mrapi_resource_t* mem_root;

mrapi_shmem_hndl_t shmem_hndl;

mrapi_shmem_attributes_t shmem_attributes;

int i;

mrapi_addr_t addr;

// get the metadata resource tree (filtered for memory only)

mem_root = mrapi_resources_get (MRAPI_RSRC_MEM,&status);

if (status != MRAPI_SUCCESS) { ERR(“Unable to get resource tree”);}

// find the desired memory in the metadata resource tree

for (i = 0; i < mem_root->child_count; i++) {

mrapi_resource_get_attribute (

 mem_root->children[i],

 MRAPI_RSRC_MEM_BASEADDR,

 &addr,

 sizeof(mrapi_addr_t),

 &status);

 if (status != MRAPI_SUCCESS) { ERR (“Unable to get resource attr”);}

 if (addr == 0xfffff000) {

 // we’ve found the resource for the region we want to use

 // set up the shared memory resource attribute with the metadata

 mrapi_shmem_init_attributes (&shmem_attributes, &status);

 if (status != MRAPI_SUCCESS) { ERR (“Unable to init shmem attrs”);}

 mrapi_shmem_set_attribute (&shmem_attributes,

MRAPI_SHMEM_RESOURCE,

 mem_root->children[i],

sizeof(mrapi_resource_t),

&status);

 if (status != MRAPI_SUCCESS) { ERR(“Unable to set shmem attrs”);}

 // create the shared memory

 shmem_hndl = mrapi_shmem_create (MRAPI_SHMEM_ID_ANY,

1024 /* size */,

NULL /*share with all nodes*/,

0 /*nodes_size*/,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 118 of 160

&shmem_attributes,

sizeof(shmem_attributes),

&status);

 if (status != MRAPI_SUCCESS) { ERR(“Unable to create shmem”);}

 break;

 }

 }

}

5.2 Automotive Use Case

5.2.1 Characteristics

5.2.1.1 Sensors

Tens to hundreds of sensor inputs read on a periodic basis. Each sensor is read and its data are
processed by a scheduled task.

5.2.1.2 Control Task

 A control task takes sensor values and computes values to apply to various actuators in the engine.

5.2.1.3 Lost Data

Lost data is not desirable, but old data quickly becomes irrelevant; the most-recent sample is most
important.

5.2.1.4 Types of Tasks

Consists of both control and signal processing, especially FFT.

5.2.1.5 Load Balance

The load balance changes as engine speed increases. The frequency at which the control task must be
run is determined by the RPM of the engine.

5.2.1.6 Message Size and Frequency

Messages are expected to be small and message frequency is high.

5.2.1.7 Synchronization

Synchronization between control and data tasks should be minimal to avoid negative impacts on latency
of the control task. If shared memory is used there can be multiple tasks writing and one reader.
Deadlock will not occur, but old data may be used if an update is not ready.

5.2.1.8 Shared Memory

Typical engine controllers incorporate on-chip flash and SRAM and can access off-chip memory as well.
Shared memory regions must be in the SRAM for maximum performance. Because a small OS or no
OS is involved, it is typical for logical mappings of addresses to be avoided. If an MMU is involved, it will
typically be programmed for logical == physical and with few large page entries versus lots of small
page entries. Maintenance of a page table and use of page-replacement algorithms should be avoided.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 119 of 160

5.2.2 Key Functionality Requirements

5.2.2.1 Control Task

There must be a control task collecting all data and calculating updates. This task must update engine
parameters continuously. Updates to engine parameters must occur when the engine crankshaft is at a
particular angle, so the faster the engine is running, the more frequently this task must run.

5.2.2.2 Angle Task

There must be a data task to monitor engine RPM and schedule the control task.

5.2.2.3 Data Tasks

There must be a set of tens to hundreds of tasks to poll sensors. The task must communicate this data
to the control task.

5.2.3 Context and Constraints

5.2.3.1 Operating System

Often there is no commercial operating system involved, although the notion of time-critical tasks and
task scheduling must be supported by some type of executive. However, this may be changing.
Possible candidates are OSEK, or other RTOS.

5.2.3.2 Polling and Interrupts

Sensor inputs may be polled and/or associated with interrupts.

5.2.3.3 Reliability

Sensors are assumed to be reliable. Interconnect is assumed to be reliable. Task completion within
scheduled deadline is assumed to be reliable for the control task, and less reliable for the data tasks.

5.2.4 Metrics

5.2.4.1 Latency of Control Task

Latency of the control task depends on engine RPM. At 1800 RPM the task must complete every
33.33ms, and at 9000 RPM the task must complete every 6.667ms.

5.2.4.2 Number of Dropped Sensor Readings

Ideally zero.

5.2.4.3 Latencies of Data Tasks

Ideally the sum of the latencies plus message send/receive times should be less than the latency of the
control loop, given the current engine RPM. In general, individual tasks are expected to complete in
times varying from 1ms up to 1600ms, depending on the nature of the sensor and the type of
processing required for its data.

5.2.4.4 Code Size

Automotive customers expect their code to fit into on-chip SRAM. The current generation of chips often
has 1Mb of SRAM, with 2Mb on the near horizon.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 120 of 160

5.2.5 Possible Factorings

• 1 general-purpose core for control, 1 general-purpose core for data

• 1 general-purpose core for control/data, dedicated SIMD core for signal processing, other special-
purpose cores for remainder of data processing

• 1 core per cylinder, or 1 core per group of cylinders

5.2.6 MRAPI Requirements Implications

• Fast locks supporting multiple writers and a single reader are required. Maximum lock rate <<
6ms on 800mhz core would be typical.

• Locks must work transparently whether they are unicore or multicore.

• Ability to select shared-memory region based on attribute: SRAM.

• Ability to select shared-memory region based on attribute: logical == physical.

• Ability to select shared memory region based on attribute: no MMU overhead (other than initial
page-entry set up if required).

5.2.7 Mental Models

Engine Knock?

Hardware
Accelerator

(TPU)
Memory

CPU

D to A

A to D

Clean Burn?

Carburator

Sensor

SensorSensorSensorSensor

Flywheel

Figure 3. Example Hardware

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 121 of 160

Engine Knock?

Hardware
Accelerator

(TPU)
Memory

CPU

D to A

A to D

Clean Burn?

Carburator

Sensor

SensorSensorSensorSensor

Flywheel

Signal Processing

Tasks (CPU)

TPU Task

(TPU)

Control Task

(CPU)

Initialize

(CPU)

main (…) {

create shared memory

create msg chans (connections)

create/schedule tasks, passing

parms such as chans, mem regions

wait forever

}

for (…) {

wait TPU task msg

read shared memory

for (signal processing task) {

test signal msg

if (msg) recv msg

}

compute new carburator params

update carburator

}

for (…) {

read sensor

compute RPM

update shared memory

send msg to control task

}

for (…) {

read sensor

process signal

send msg to control task

}

Hardware Configuration

Software Configuration

Figure 4. A Possible Mapping

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 122 of 160

Engine Knock?

Hardware
Accelerator

(TPU)
Memory

CPU2 D to A

A to D

Clean Burn?

Carburator

Sensor

SensorSensorSensorSensor

Flywheel

CPU1

Hardware Configuration

Signal Processing

Tasks (CPU2)

main (…) {

create shared memory

create msg chans (connections)

create/schedule tasks, passing

parms such as chans, mem regions

wait forever

}

TPU Task

(TPU)

Control Task

(CPU1)

Initialize

(CPU)

for (…) {

wait TPU task msg

read shared memory

for (signal processing task) {

wait for signal msg

}

compute new carburator params

update carburator

}

for (…) {

read sensor

compute RPM

update shared memory

send msg to control task

}

for (…) {

read sensor

process signal

send msg to control task

}

Software Configuration

Figure 5. Alternative Hardware

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 123 of 160

5.2.8 MRAPI Pseudocode

5.2.8.1 Initial Mapping

///

// The control task

///

void Control_Task(void) {

 mrapi_shmem_hndl_t sMem; /* handle to the shmem */

 mrapi_mutex_hndl_t sMem_mutex;

 char* sPtr;

 mrapi_key_t lock_key;

 uint8_t tFlag;

 mcapi_endpoint_t tpu_rmem_endpt;

 mcapi_endpoint_t sig_endpt, sig_rmem_endpt;

 mcapi_endpoint_t tmp_endpt;

 mcapi_pktchan_recv_hndl_t sig_chan;

 struct SIG_DATA sDat;

 size_t tSize;

 mcapi_request_t r1, r2;

 mcapi_status_t err;

 mrapi_status_t mrapi_status;

 mrapi_parameters_t parms;

 mrapi_info_t version;

 // init the system

 mcapi_initialize(CNTRL_NODE, &err);

 CHECK_STATUS(err);

 mrapi_initialize(AUTO_USE_CASE_DOMAIN_ID, CNTRL_NODE,

 parms,&version, &mrapi_status);

 CHECK_STATUS(mrapi_status);

 // first create local endpoints

 sig_endpt = mcapi_create_endpoint(CNTRL_PORT_SIG,

 &err);

 CHECK_STATUS(err);

 // now we get two rmem endpoints

 mcapi_get_endpoint_i(TPU_NODE, TPU_PORT_CNTRL,

 &tpu_rmem_endpt, &r1, &err);

 CHECK_STATUS(err);

 mcapi_get_endpoint(SIG_NODE, SIG_PORT_CNTRL,

 &sig_rmem_endpt, &r2, &err);

 CHECK_STATUS(err);

 // wait on the endpoints

 while (!((mcapi_test(&r1,NULL,&err)) &&

 (mcapi_test(&r2,NULL,&err))) {

 // KEEP WAITING

 }

 // create our mutex for the shared memory region

 sMem_mutex =

 mrapi_mutex_create(SMEM_MUTEX_ID, MRAPI_NULL,

 &mrapi_status);

 CHECK_STATUS(mrapi_status);

 // allocate shmem and send the handle to TPU task

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 124 of 160

 sMem = mrapi_shmem_create(SHMEM_ID, SHMEM_SIZE,

 MRAPI_NULL, 0, MRAPI_NULL,

 0, &mrapi_status);

 CHECK_STATUS(mrapi_status);

 sPtr = (void*) mrapi_shmem_attach(sMem,&mrapi_status);

 CHECK_STATUS(mrapi_status);

 tmp_endpt = mcapi_create_anonymous_endpoint(&err);

 CHECK_STATUS(err);

 // send the shmem handle

 mcapi_msg_send(tmp_endpt, tpu_rmem_endpt, sMem,

 sizeof(sMem), &err);

 CHECK_STATUS(err);

 // connect the channels

 mcapi_connect_pktchan_i(sig_endpt, sig_rmem_endpt,

 &r1, &err);

 CHECK_STATUS(err);

 // wait on the connection

 while (!mcapi_test(&r1,NULL,&err)) {

 // KEEP WAITING

 }

 // now open the channels

 mcapi_open_pktchan_recv_i(&sig_chan, sig_endpt,

 &r1, &err);

 CHECK_STATUS(err);

 // wait on the channels

 while (!(mcapi_test(&r1,NULL,&err)) {

 // KEEP WAITING

 }

 // now ALL of the bootstrapping is finished

 // we move to the processing phase below

 while (1) {

 // NOTE – get an MRAPI lock

 mrapi_mutex_lock (sMem_mutex, &lock_key, 0,

 &mrapi_status);

 CHECK_STATUS(mrapi_status);

 // read the shared memory

 if (sPtr[0] != 0) {

 // process the shared memory data

 } else {

 // PANIC -- error with the shared mem

 }

 // NOTE – release the MRAPI lock

 mrapi_mutex_unlock(sMem_mutex, &lock_key,

 &mrapi_status);

 CHECK_STATUS(mrapi_status);

 // now get data from the signal processing task

 // would be a loop if there were multiple sig tasks

 mcapi_pktchan_recv(sig_chan, (void **) &sDat,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 125 of 160

 &tSize, &err);

 CHECK_STATUS(err);

 // Compute new carb params & update carb

 }

}

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 126 of 160

//

// The TPU task

//

void TPU_Task() {

 mrapi_shmem_hndl_t sMem; /* handle to shmem */

 mrapi_mutex_hndl_t sMem_mutex;

 char* sPtr;

 mrapi_key_t lock_key;

 size_t msgSize;

 mcapi_endpoint_t cntrl_endpt;

 mcapi_request_t r1;

 mcapi_status_t err;

 // init the system

 mcapi_initialize(TPU_NODE, &err);

 CHECK_STATUS(err);

 mrapi_initialize(AUTO_USE_CASE_DOMAIN_ID, TPU_NODE,

 MRAPI_NULL, MRAPI_NULL,&mrapi_status);

 CHECK_STATUS(mrapi_status);

 cntrl_endpt =

 mcapi_create_endpoint(TPU_PORT_CNTRL, &err);

 CHECK_STATUS(err);

 // now get the shared mem ptr

 mcapi_msg_recv(cntrl_endpt, &sMem, sizeof(sMem),

 &msgSize, &err);

 CHECK_STATUS(err);

 sPtr = (void*) mrapi_shmem_attach(sMem, &mrapi_status);

 CHECK_STATUS(mrapi_status);

 // ALL bootstrapping is finished, begin processing

 while (1) {

 // NOTE – get an MRAPI lock

 mrapi_mutex_lock(sMem_mutex, &lock_key, 0,

 &mrapi_status);

 CHECK_STATUS(mrapi_status);

 // do something that updates shared mem

 sPtr[0] = 1;

 // NOTE – release the MRAPI lock

 void mrapi_mutex_unlock(sMem_mutex, &lock_key,

 &mrapi_status);

 }

}

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 127 of 160

//

// The SIG Processing Task

//

void SIG_task() {

 mcapi_endpoint_t cntrl_endpt, cntrl_rmem_endpt;

 mcapi_pktchan_send_hndl_t cntrl_chan;

 mcapi_request_t r1;

 mcapi_status_t err;

 // init the system

 mcapi_initialize(SIG_NODE, &err);

 CHECK_STATUS(err);

 cntrl_endpt =

 mcapi_create_endpoint(SIG_PORT_CNTRL, &err);

 CHECK_STATUS(err);

 mcapi_get_endpoint_i(CNTRL_NODE, CNTRL_PORT_SIG,

 &cntrl_rmem_endpt, &r1, &err);

 CHECK_STATUS(err);

 // wait on the rmem endpoint

 mcapi_wait(&r1,NULL,&err);

 CHECK_STATUS(err);

 // NOTE – connection handled by control task

 // open the channel

 mcapi_open_pktchan_send_i(&cntrl_chan, cntrl_endpt,

 &r1, &err);

 CHECK_STATUS(err);

 // wait on the open

 mcapi_wait(&r1,NULL,&err);

 CHECK_STATUS(err);

 // All bootstrap is finished, now begin processing

 while (1) {

 // Read sensor & process signal

 struct SIG_DATA sDat; // populate this with results

 // send the data to the control process

 mcapi_pktchan_send(cntrl_port, &sDat, sizeof(sDat),

 &err);

 CHECK_STATUS(err);

 }

}

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 128 of 160

5.2.8.2 Changes Required to Port to New Multicore Devices

To map this code to additional CPUs, the only change required is in the constant definitions for node
and port numbers in the creation of endpoints.

5.3 Remote Memory Use Cases

5.3.1 Remote Memory Use case 1

In this use case, the accelerator core accesses the host core’s memory randomly using DMA and/or
software cache.

This use case aims to capture a common programming pattern for the Cell Broadband Engine
processor. On the Cell processor, the PPE (host) may launch a thread on an SPE (accelerator). The
SPE can access all of PPE memory via DMA.

For certain kinds of access, particularly access to contiguous arrays in main memory, it is convenient to
use DMA directly, using double or triple buffering to overlap communication with computation. This
requires the use of non-blocking read and write operations on host memory.

For less regular types of access, but where there is likely to be some locality, it is common to use a
software cache, which fetches data from main memory via DMA, but caches chunks of data locally to
avoid repeated fetches. With a software cache, read and write calls are blocking.

The following use case illustrates these scenarios: There are two nodes, Node 1 and Node 2. Node 1
has a linked-list data structure in memory, which Node 2 is going to process. For each element in the
list, Node 2 will compute a score. The scores will be written back via DMA, because they are to be
stored contiguously in Node 1’s memory. The list elements will be read via a software cache because,
we assume, they are relatively close together (e.g. perhaps the linked list elements are stored as an
array, but are chained together in a non-contiguous order).

/*--*/

/* Definitions common to Node 1 and Node 2 */

/*--*/

typedef struct Entity_s {

 // DATA FIELDS (not specified here)

 struct Entity_s * next;

} Entity;

#define AGREED_ID_FOR_SW_CACHE 0 /* In a real application these IDs would

more likely be obtained */

#define AGREED_ID_FOR_DMA 1 /* by one node via MRAPI, and communicated

to the other node. */

/*--*/

/* Node 1 side of use case */

/*--*/

/* Helper functions for Node 1 - these are not part of MRAPI, and could be

implemented using various appropriate mechanisms */

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 129 of 160

/* Function which uses some mechanism (e.g. MCAPI) to send a message to Node

2 */

void send_to_node2(int);

/* Function via which Node 1 waits for Node 2 to complete its work */

void wait_for_notification_from_node2();

void* START_OF_HEAP;

int SIZE_OF_HEAP;

/* Code for Node 1 functionality */

int node1_remote_memory_use_case_1(Entity * entities_to_be_processed,

 float * scores_to_be_computed, unsigned int number_of_entities)

/* 'entities_to_be_processed' is a linked list of 'Entity' structures,

which are going to be processed by Node 2. Since the 'Entity' data is not

contiguous, but elements of the list may reside close together in memory,

software caching is an appropriate access mechanism for the remote access.

 'scores_to_be_computed' is an array which is to be filled, by Node 2,

with a score for each entity. Since elements of this array are contiguous,

DMA is an appropriate access mechanism for the remote access.

*/

{

 mrapi_status_t status; /* For error checking */

 /* Handles for software cache- and DMA-accessed remote memory */

 mrapi_rmem_hndl_t sw_cache_hndl;

 mrapi_rmem_hndl_t dma_hndl;

 /* We want Node 2 to process the linked list

'entities_to_be_processed'. But elements of this list can be located

anywhere on the heap, thus we need to make the heap available remotely.

 */

 sw_cache_hndl = mrapi_rmem_create(AGREED_ID_FOR_SW_CACHE,

 START_OF_HEAP,

 MRAPI_ACCESS_TYPE_SW_CACHE,

 NULL,

 SIZE_OF_HEAP,

 &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to create remote memory for sw cache”);

 }

 /* Send Node 2, as integers, values of the pointers for

'entities_to_be_processed' and 'START_OF_HEAP'

 */

 send_to_node2((int)entities_to_be_processed);

 send_to_node2((int)START_OF_HEAP);

 /* Promote 'scores_to_be_computed' to allow remote access via DMA */

 dma_hndl = mrapi_rmem_create(AGREED_ID_FOR_DMA,

 scores_to_be_computed,

 MRAPI_ACCESS_TYPE_DMA,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 130 of 160

 NULL,

 number_of_entities*sizeof(float),

 &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to create remote memory for DMA”);

 }

 /* Node 2 can now find these remote memory buffers,

 and work with them */

 /* Node 1 waits until Node 2 has finished (using some

 appropriate mechanism) */

 wait_for_notification_from_node2();

 mrapi_rmem_detach(sw_cache_hndl, &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to detach from remote memory sw cache”);

 }

 mrapi_rmem_delete(sw_cache_hndl, &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to delete remote memory for sw cache”);

 }

 mrapi_rmem_detach(dma_hndl, &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to detach from remoty memory DMA”);

 }

 mrapi_rmem_delete(dma_hndl, &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to delete remote memory for DMA”);

 }

 return 0;

};

/*--*/

/* Node 2 side of use case */

/*--*/

/* Helper functions for Node 2 - these are not part of MRAPI, and could be

 implemented using various appropriate mechanisms */

/* Function to receive an integer message from Node 1, via some appropriate

mechanism (e.g. MCAPI) */

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 131 of 160

int receive_from_node1();

/* Function to determine whether an mrapi_rmem_get call succeeded */

int get_successful(mrapi_status_t*);

/* Function to tell Node 1 that processing has completed */

void notify_node1();

/* Function for doing processing on an 'Entity' */

float process(Entity *);

#define BUFFER_SIZE 1024

/* Buffers local to Node 2 used to store results, for double-buffered write-

back */

float result_buffers[2][BUFFER_SIZE];

int node2_remote_memory_use_case_1()

{

 mrapi_status_t status; /* For error checking */

 /* Handles for software cache- and DMA-accessed remote memory */

 mrapi_rmem_hndl_t sw_cache_hndl;

 mrapi_rmem_hndl_t dma_hndl;

 unsigned int start_of_node1_heap;

 unsigned int address_of_next_entity_to_process;

 start_of_node1_heap = receive_from_node1();

 address_of_next_entity_to_process = receive_from_node1();

 do {

 /* Get a handle to remote memory for software cache-access */

 sw_cache_hndl = mrapi_rmem_get(AGREED_ID_FOR_SW_CACHE,

 MRAPI_ACCESS_TYPE_SW_CACHE, &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to get remote memory for sw cache”);

 }

 } while (!get_successful(&status));

 /* Use the handle to attach to the remote memory */

 mrapi_rmem_attach(sw_cache_hndl,

 MRAPI_ACCESS_TYPE_SW_CACHE,

 &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to attach to remote memory for sw cache”);

 }

 do {

 /* Get a handle to remote memory for DMA-access */

 dma_hndl = mrapi_rmem_get(AGREED_ID_FOR_DMA,

 MRAPI_ACCESS_TYPE_DMA,&status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 132 of 160

 ERR(“Unable to get remote memory for DMA”);

 }

 } while (!get_successful(&status));

 /* Use the handle to attach to the remote memory */

 mrapi_rmem_attach(dma_hndl,MRAPI_ACCESS_TYPE_DMA,&status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to attach to remote memory for DMA”);

 }

 unsigned int num_entities_processed = 0;

 // Pair of request objects to allow us to wait for DMA operations on

 // either of two result buffers

 mrapi_request_t[2] request;

 Entity next_entity_to_process;

 bool first = true;

 int cur_buf = 0; // Selects which buffer we are currently using.

 do {

 unsigned int offset_for_next_entity =

 address_of_next_entity_to_process - start_of_node1_heap;

 /* Read an entity from Node 1's memory, via software cache.

 We use a blocking operation because we need the result to

 continue processing, and we hope the cache will mean that the

 result is held locally and will thus arrive quickly. */

 mrapi_rmem_read(sw_cache_hndl,

 offset_for_next_entity,

 &next_entity_to_process,

 0,

 sizeof(Entity),

 1, /* num_strides is 1 */

 0, /* rmem_stride is irrelevant */

 0, /* local_stride is irrelevant */

 &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to read remote memory sw cache”);

 }

 result_buffers[cur_buf][num_entities_processed % BUFFER_SIZE] =

 process(& next_entity_to_process);

 num_entities_processed++;

 address_of_next_entity_to_process =

 (unsigned int)(next_entity_to_process.next);

 if((num_entities_processed % BUFFER_SIZE) == 0)

 {

 // CHECK STATUS FOR ERROR - DETAILS OMITTED

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 133 of 160

 /* Issue non-blocking DMA of buffer-full of results back

 to Node 1's memory. We use a non-blocking operation

 because we do not need to wait for the write to

 complete in order to continue processing the list: it is

 preferrable to overlap communication with computation. */

 mrapi_rmem_write_i(

 dma_hndl,

 num_entities_processed*sizeof(float),

 result_buffers[cur_buf],

 0,

 BUFFER_SIZE*sizeof(float),

 1, /* num_strides is 1 */

 0, /* rmem_stride is irrelevant */

 0, /* local_stride is irrelevant */

 &request[cur_buf],

 &status);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to initiate a remote memory write for DMA”);

 }

 // Switch to use other buffer for processing, while

 // existing results are written back.

 cur_buf = 1 - cur_buf;

 /* Wait for previous write operation to complete */

 if(!first)

 {

 mrapi_wait(&request[cur_buf], &status, NO_TIMEOUT);

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to complete remote memory write DMA”);

 }

 } else {

 first = false;

 }

 }

 } while(next_entity_to_process.next != NULL);

 /* Check to see if there is a partial buffer of results still to

 write back */

 if((num_entities_processed % BUFFER_SIZE) != 0)

 {

 // CHECK STATUS FOR ERROR - DETAILS OMITTED

 /* Issue non-blocking DMA of final results back to

 Node 1's memory */

 mrapi_rmem_write_i(dma_hndl,

 num_entities_processed*sizeof(float),

 result_buffers[cur_buf],

 0,

 (num_entities_processed % BUFFER_SIZE)*sizeof(float),

 1, /* num_strides is 1 */

 0, /* rmem_stride is irrelevant */

 0, /* local_stride is irrelevant */

 &request[cur_buf],

 &status);

 // CHECK STATUS FOR ERROR - DETAILS OMITTED

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 134 of 160

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to initiate a remote memory write for DMA”);

 }

 cur_buf = 1 - cur_buf;

 /* Wait for previous write operation to complete */

 if(!first)

 {

 mrapi_wait(&request[cur_buf], &status, NO_TIMEOUT);

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to complete remote memory write for DMA”);

 }

 }

 }

 /* Wait for final write operation to complete */

 mrapi_wait(&request[1-cur_buf], &status, NO_TIMEOUT);

 // CHECK STATUS FOR ERROR

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to complete final remote memory write for DMA”);

 }

 /* Detach from remote memories */

 mrapi_rmem_detach(sw_cache_hndl, &status);

 // CHECK STATUS FOR ERROR - DETAILS OMITTED

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to detach from remote memory sw cache”);

 }

 mrapi_rmem_detach(dma_hndl, &status);

 // CHECK STATUS FOR ERROR - DETAILS OMITTED

 if (status != MRAPI_SUCCESS) {

 ERR(“Unable to detach from remote memory DMA”);

 }

 /* Notify Node 1 that we are done */

 notify_node1();

 return 0;

}

5.3.2 Remote Memory Use Case 2

This use case captures the scenario where one processing node has a very small amount of RAM, and
requires RAM on another processing node to be made available to store intermediate results. This is
common on a processor like Cell, in which SPEs have only 256KB local store but the PPE is connected
to a large main memory.

The idea in this use case is that Node 1 has a thread that is monitoring a thread on Node 2. The Node 1
thread sleeps until it receives a message from Node 2, either saying “stop”, or saying “I need more
memory”. In the latter case, Node 1 allocates a new buffer of memory locally, and uses MRAPI to
promote this to be remotely accessible, sending Node 2 the corresponding remote memory ID. Node 2
can then use the memory as desired.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 135 of 160

Once Node 2 completes, Node 1 can reclaim all the memory.

/*--*/

/* Definitions common to Node 1 and Node 2 */

/*--*/

/* Integer constants */

#define QUIT ...

#define MORE_DATA_PLEASE ...

#define AGREED_ACCESS_TYPE ...

/*--*/

/* Node 1 side of use case */

/*--*/

/* Helper functions for Node 1 - these are not part of MRAPI, and could be

 implemented using various appropriate mechanisms */

/* Function which uses some mechanism (e.g. MCAPI) to send a remote memory

id to Node 2 */

void send_id_to_node2(mrapi_rmem_id_t);

/* Function via which Node 1 waits for Node 2 to send an integer message */

void wait_for_message_from_node_2(int*);

/* Function via which Node 1 gets a fresh remote memory id */

mrapi_rmem_id_t get_fresh_rmem_id()

typedef struct Memory_Region_s

{

 char* pointer; /* A local buffer */

 mrapi_rmem_hndl_t handle;

 /* The remote memory handle associated with this buffer */

} Memory_Region;

/* Array to keep track of memory which has been made available remotely */

Memory_Region buffers[MAX];

/* Code for Node 1 functionality */

int node1_remote_memory_use_case_2()

 /*

 Node 1 is "looking after" Node 2, and waits for Node 2

 to send messages requesting more data. On receiving such

 a message, Node 1 allocates some more memory which it

 makes available to Node 2. Once Node 2 signals that it has

 completed, Node 1 deletes all the allocated memory.

 */

{

 mrapi_status_t status; /* For error checking */

 int message;

 int next_buf = 0;

 while (wait_for_message_from_node_2(&message))

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 136 of 160

 {

 if(message == QUIT)

 {

 /* Node 2 says "I'm done", so we can exit the loop */

 break;

 }

 assert(message == MORE_MEMORY_PLEASE);

 /* Node 2 needs some more memory, and will have

 sent another message saying how much */

 int amount_of_data_required_in_bytes;

 wait_for_message(&amount_of_data_required_in_bytes);

 /* Allocate the desired amount of memory locally */

 buffers[next_buf].pointer = (char*)

 malloc(amount_of_data_required_in_bytes *

 sizeof(char));

 /* We want to make this memory available remotely,

 so obtain an id for the new piece of remote memory */

 mrapi_rmem_id_t id = get_fresh_rmem_id();

 /* Now promote the freshly allocated buffer to be

 visible remotely */

 buffers[next_buf].handle = mrapi_rmem_create(

 id,

 buffers[next_buf].pointer,

 AGREED_ACCESS_TYPE,

 NULL,

 amount_of_data_required_in_bytes * sizeof(char),

 &status);

 // CHECK status FOR ERRORS - OMITTED

 /* Finally, tell Node 2 what the id is for the

 new memory */

 send_to_node2(id);

 next_buf++;

 }

 /* Node 2 has finished, so Node 1 can demote the memory regions it

 made available remotely, and then free the corresponding memory

 */

 for(int i=0; i<next_buf; i++)

 {

 /* Demote piece of remote memory to no longer be remotely

 visible */

 mrapi_rmem_delete(buffers[i].handle, &status);

 // CHECK status FOR ERRORS - OMITTED

 /* Now actually free the local memory which corresponded to

 this remote memory */

 free(buffers[i].pointer);

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 137 of 160

 }

 return 0;

};

/*--*/

/* Node 2 side of use case */

/*--*/

/* Helper functions for Node 2 - these are not part of MRAPI,

and could be implemented using various appropriate mechanisms */

/* Function which uses some mechanism (e.g. MCAPI) to receive a remote

memory id from Node 1 */

mrapi_rmem_id_t receive_id_from_node1();

/* Function which uses some mechanism (e.g. MCAPI) to send an integer

message to Node 1 */

void send_message_to_node_1(int);

int node2_remote_memory_use_case_2()

{

 mrapi_status_t status; /* For error checking */

 /* An array of remote memory handles */

 mrapi_hndl_t handles[MAX];

 int next_hndl = 0;

 while(...)

 {

 /* Node 2 does some processing which we do not specify here.

 Once in a while, Node 2 needs to use Node 1's memory as a

 "spill" buffer, thus requiring access to a region of this

 memory */

 if(need to spill)

 {

 int number_of_bytes_required = ...;

 send_message_to_node_1(MORE_MEMORY_PLEASE);

 send_message_to_node_1(number_of_bytes_required);

 /* Node 1 will receive these messages and create some

 remotely accessible memory, for which it will send an id

 */

 mrapi_rmem_id_t id = receive_id_from_node1();

 /* Use the id to get a handle for the remote memory */

 handles[next_hndl] = mrapi_rmem_get(id,

 AGREED_ACCESS_TYPE,&status);

 // ERROR CHECKING ON status NOT SHOWN

 mrapi_rmem_attach(handles[next_hndl,

 AGREED_ACCESS_TYPE,

 &status);

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 138 of 160

 // ERROR CHECKING ON status NOT SHOWN

 next_hndl++;

 /* Now Node 2 can do some work using this remote memory,

 via MRPI calls such as mrapi_rmem_read and

 mrapi_rmem_write. We do not show details as this would be

 application-specific

 */

 ...

 }

 }

 for(int i=0; i<next_hndl; i++)

 {

 mrapi_rmem_detach(handles[i], &status);

 // ERROR CHECKING ON status NOT SHOWN

 }

 send_message_to_node_1(QUIT);

 return 0;

}

5.4 Synchronization Use Case

TI has several chips that have a General-Purpose Processor (GPP) and a DSP. The GPP traditionally
runs a higher-level RTOS like Linux, QNX, or WinCE. The DSP traditionally runs a DSP BIOS.

One typical case is to use the DSP as a video/audio accelerator. The GPP sends remote memory
processor call (RCP) messages to the DSP. An RCP message contains a pointer to the data to process,
type and size of the data, how to process, etc. After it is finished, the DSP sends a message back to
complete the GPP RCP call.

The typical size of an RCP message is 4K bytes. The throughput is ~100 messages per second both
ways (30 frames/second for video and 30 to 50 frames/second for audio). A typical system has ~64
messages in a system.

Generally, the communication between the processors is either shared memory and interrupts or
specialized hardware mechanisms. In the case of shared memory, the chips must support the same
type of synchronization mechanism. The typical mechanisms include: spinlocks, hardware semaphores,
support for Peterson’s exclusion algorithm, and a few more.

Typically the GPP is the master and controls the starting and stopping of the DSP. All communication
mechanisms must support the stopping of one side. The communication and synchronization
mechanisms must also be portable to allow the easy migration of code to a different processor and OS.

5.5 Networking Use Case

Packet-processing use case provided by Patrick Griffin, Tilera. This use case extends the Packet
Processing use case from the MCAPI specification to take advantage of MRAPI functions.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 139 of 160

MRAPI's support for shared memory and mutexes is used to create a shared memory flow-state table,
which tracks information about groups of packets flowing between the same source and destination
hosts.

This example presents the typical startup and inner loop of a packet processing application. There are
two source files: load_balancer.c and worker.c. The main entry point is in load_balancer.c.

The program begins in the load balancer, which spawns a set of worker processes and binds channels
to them. Each worker has two channel connections to the load balancer: a packet channel for work
requests and a stream channel for acks. When work arrives on the packet channel from the load
balancer, the worker processes it and then sends back an ack to the load balancer. The load balancer
will not send new work to a worker unless an ack word has been returned.

The worker's packet processing algorithm uses MRAPI to accomplish the following tasks:

1. At the start of time, it allocates a shared memory hash table that contains linked lists of packet
flows.

2. As each packet arrives, the worker computes a hash bucket number based on its source and
destination addresses.

3. The worker locks that hash bucket.

4. Having gained exclusive access to that bucket, the worker scans a linked list to see if the flow
already exists, and if so, updates it.

5. If the flow is new to the system, the worker allocates a flow information object from MRAPI shared
memory and adds it to the list.

6. The worker releases the lock on the hash bucket.

The relevant MRAPI worker code is shown below. This code is run on several worker cores, all
accessing the same shared-memory flow table in parallel. The code below includes both the shared-
memory initialization code run on all workers and the function that each worker calls when a packet
arrives.

#define MY_SHMEM_ID 7

#define MAX_FLOWS (1024 * 1024)

#define HASH_BUCKETS 512

typedef struct flow_info_s {

 flow_info_s *next;

 ... various protocol state ...

} flow_info_t;

typedef struct {

 mrapi_mutex_hndl_t lock;

 flow_info_t *list;

} flow_hash_table_entry_t;

typedef struct {

 flow_hash_table_entry_t buckets[HASH_BUCKETS];

 flow_info_t* free_list_head;

 flow_info_t* free_list_tail;

 mrapi_mutex_hndl_t free_list_lock;

} flow_hash_table_t;

flow_hash_table_t *flow_table;

void init(int rank)

{

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 140 of 160

 mrapi_status_t status;

 if (rank == 0)

 {

 size_t size =

 sizeof(flow_info_t) * MAX_FLOWS +

 sizeof(flow_hash_table_t);

 mrapi_shmem_hndl_t mem_hndl =

 mrapi_shmem_create(MY_SHMEM_ID, size, NULL, 0, NULL, 0, &status);

 if (status != MRAPI_SUCCESS)

 die("Couldn't create shared memory.\n");

 void* mem = mrapi_shmem_attach(mem_hndl, &status);

 if (status != MRAPI_SUCCESS)

 die("Couldn't map shared memory region.\n");

 // This function takes our large allocation and fills in the hash

 // table. In particular, it takes the large memory region and

 // splits into a flow_hash_table_t object and a free list

 // containing MAX_FLOWS flow_info_t objects.

 flow_table = init_flow_table(mem, MAX_FLOWS);

 // Initialize locks for each bucket, and for the free list.

 for (int i = 0; i < HASH_BUCKETS; i++)

 {

 flow_table->buckets[i] = mrapi_mutex_create(i, NULL, &status);

 if (status != MRAPI_SUCCESS)

 die("Couldn't allocate mutex for bucket.\n");

 }

 flow_table->free_list_lock =

 mrapi_mutex_create(HASH_BUCKETS + 1, NULL, &status);

 if (status != MRAPI_SUCCESS)

 die("Couldn't allocate mutex for free list.\n");

 }

 // This could be implemented using MCAPI.

 barrier();

 if (rank != 0)

 {

 mrapi_shmem_hndl_t mem_hndl = mrapi_shmem_get(MY_SHMEM_ID, &status);

 if (status != MRAPI_SUCCESS)

 die("mrapi_shmem_get() failed.\n");

 flow_table = (flow_hash_table_t*) mrapi_shmem_attach(mem_hndl, &status);

 if (status != MRAPI_SUCCESS)

 die("Couldn't map shared memory region.\n");

 }

}

void update_flows(PacketInfo *packet) {

 int bucket = hash_packet(packet);

 flow_info_t* flow;

 mrapi_status_t status;

 mrapi_key_t lock_key;

 mrapi_mutex_lock(flow_table[bucket].lock, &lock_key, 0, &status);

 if (status != MRAPI_SUCCESS)

 die("Lock failure.\n");

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 141 of 160

 flow = scan_linked_list(flow_table[bucket].list, packet);

 if (!flow) {

 // Lock the free list and allocate a new flow.

 mrapi_key_t free_lock_key;

 mrapi_mutex_lock(flow_table->free_list_lock,

 &free_lock_key, 0, &status);

 if (status != MRAPI_SUCCESS)

 die("Lock failure.\n");

 flow = alloc_from_free_list(flow_table);

 init_flow(flow, packet);

 add_to_linked_list(flow_table[table].list, flow);

 mrapi_mutex_unlock(flow_table->free_list_lock, &free_lock_key, &status);

 if (status != MRAPI_SUCCESS)

 die("Lock release failure.\n");

 }

 else

 {

 update_flow(flow, packet);

 }

 mrapi_mutex_unlock(flow_table[bucket].lock, &lock_key, &status);

 if (status != MRAPI_SUCCESS)

 die("Lock release failure.\n");

}

Again, the key MRAPI primitives are dynamic shared-memory allocation and a mutex primitive.
Statically allocated shared-memory objects are used in the example code, but are not required.

5.6 Metadata Use Cases

5.6.1 Dynamic Attribute Example

Below is an example of monitoring a resource (L3 cache hits) and registering a callback event when the
counter rolls over.

mca_status_t mrapi_status;

#define WRONG wrong(__LINE__);

void wrong(unsigned line) {

 fprintf(stderr,"WRONG: line=%u status=%s\n",

line,mrapi_display_status(mrapi_status));

 fflush(stdout);

 exit(1);

}

/* Callbacks for handling when the counters rollover */

mrapi_boolean_t rollover = MRAPI_FALSE;

void l3cache_hits_rollover(void) {

 rollover = MRAPI_TRUE;

}

int main () {

 mrapi_parameters_t parms;

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 142 of 160

 mrapi_info_t version;

 mrapi_resource_t *root;

 mrapi_rsrc_filter_t filter;

 mrapi_resource_t *l3cache;

 /* initialize */

 mrapi_initialize(DOMAIN,NODE,parms,&version,&mrapi_status);

 if (mrapi_status != MRAPI_SUCCESS) { WRONG }

 /* Get the cache attributes */

 filter = MRAPI_RSRC_CACHE;

 root = mrapi_resources_get(filter, &mrapi_status);

 l3cache = root->children[0];

 uint32_t cache_hits;

 mrapi_resource_get_attribute(l3cache, 1, (void *)&cache_hits,

 sizeof(cache_hits), &mrapi_status);

 if (mrapi_status != MRAPI_ERR_RSRC_NOTSTARTED) { WRONG }

 /* Start the L3 cache hit monitoring */

 mrapi_dynamic_attribute_start(l3cache, 1,

 &l3cache_hits_rollover, &mrapi_status);

 if (mrapi_status != MRAPI_SUCCESS) { WRONG }

 while (rollover == MRAPI_FALSE) {

 mrapi_resource_get_attribute(l3cache, 1,

 (void *)&cache_hits, attr_size, &mrapi_status);

 if (mrapi_status != MRAPI_SUCCESS) { WRONG }

 printf ("cache hits = %d",cache_hits);

 }

 /* stop the L3 cache hit monitoring */

 mrapi_dynamic_attribute_stop(l3cache, 1, &mrapi_status);

 if (mrapi_status != MRAPI_SUCCESS) { WRONG }

 mrapi_resource_get_attribute(l3cache, 1,

 (void *)&cache_hits, attr_size, &mrapi_status);

 if (mrapi_status != MRAPI_ERR_RSRC_NOTSTARTED) { WRONG }

 /* finalize */

 mrapi_finalize(&mrapi_status);

 if (mrapi_status != MRAPI_SUCCESS) { WRONG }

5.6.2 mrapi_resource_get() Examples

Below are a series of metadata use cases based on a single system. The use case figures are graphical
representations of the resource data structure returned by a call to mrapi_resources_get().

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 143 of 160

Consider as an example two CPUs and two memories connected by two buses, with a node running on
each CPU. In Figure 6, CPU0 can access MEM0 and MEM1, and CPU1 can only access MEM0.

MEM0 MEM1

CPU1

Node B

CPU0

Node A

Figure 6. Metadata Example Hardware

In the examples below, a hypervisor, which can partition the system, is included. The hypervisor can
partition the system such that nodes running under guest operating systems can see only those units in
the same partition.

Figure 7 shows a system with two partitions. Partition 1 has CPU0, MEM0, and MEM1 included.
Partition 2 includes CPU1, MEM0, and MEM1. Since CPU0 and CPU1 are in different partitions, they
are not visible to each other.

MEM0 MEM1

CPU1

Node B

CPU0

Node A

Partition 1 Partition 2

Figure 7. Hypervisor Partitions of Example Hardware

The following figures show a graphical representation of the resource data structure.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 144 of 160

Figure 8 shows a system with no partitions, with node A executing on CPU0, and “all” specified as the
subsystem:

NodeA

MEM0 MEM1 CPU0 CPU1

Figure 8. Data Returned for Node A (Unpartitioned System)

Figure 9 shows a system with no partitions, node B executing on CPU1, and “all” specified as the
subsystem:

NodeB

MEM0 CPU0 CPU1

Figure 9. Data Returned for Node B (Unpartitioned System)

Figure 10 shows a system with the partitions described above, node A executing on CPU0, and “all”
specified as the subsystem:

NodeA

MEM0 MEM1 CPU0

Figure 10. Data Returned for Node A (Partitioned System)

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 145 of 160

Figure 11 shows a system with the partitions described above, node B executing on CPU1, and “none”
specified as the subsystem:

NodeB

MEM0 CPU1

Figure 11. Data Returned for Node B (Partitioned System)

Figure 12 shows Node A executing on CPU0, and the subsystem specified as “execution_context”,

in order to determine which resource node A is executing on:

NodeA

CPU0

Figure 12. Data Returned for Node A (Execution Context)

Figure 13 shows Node A executing on CPU0, no partition, with the subsystem specified as “memory”:

NodeA

MEM0 MEM1

Figure 13. Data Returned for Node A (Memory)

It is possible to register a callback function that is called when a system partition is changed. Suppose
the system before re-partitioning is as in Figure 8 above, and then after re-partitioning CORE0 and
CORE1 are on different partitions not visible to each other. A call to mrapi_resources_get()

following the callback function (after re-partitioning) might yield the following. Using node A on CPU0,
after re-partitioning, the results would look like Figure 10 above. Using node B on CPU1, after re-
partitioning, the results would look like Figure 11 above.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 146 of 160

6. Appendix A: Acknowledgements

The MRAPI working group would like to acknowledge the significant contributions of the following
people in the creation of this API specification.

Working Group

Sven Brehmer

Tasneem Brutch

Alastair Donaldson

Patrick Griffin

Jim Holt (chair)

Arun Joseph

Murat Karaorman

David Lindberg

Todd Mullanix

Stephen Olsen

Michele Reese (specification editor)

Andrew Richards

Ravi Singh

Roel Wuyts

The MRAPI working group also would like to thank the external reviewers who provided input and
helped us to improve the specification below is a partial list of the external reviewers (some preferred to
not be mentioned).

Reviewers

Daniel Forsgren

Masaki Gondo

Ganesh Gopalakrishnan

Marcus Hjortsberg

Paul Kelly

Tammy Lieno

Kenn Luecke

Anton Lokhmotov

Eric Mercer

Jarko Nissula

Ron Olson

Sabri Pllana

Cissy Yuan

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 147 of 160

7. Appendix B: Header Files

7.1 mca.h

/*

 * mca.h

 * Version 2.000, October 2010

*/

#ifndef MCA_H

#define MCA_H

/*

 * The mca_impl_spec.h header file is vendor/implementation specific,

 * and should contain declarations and definitions specific to a particular

 * implementation.

 *

 * This file must be provided by each implementation. It is recommended that these types be

 * either pointers or 32 bit scalars, allowing simple arithmetic equality comparison (a == b).

 * Implementers may which of these type are used.

 *

 * It MUST contain type definitions for the following types.

 *

 * mca_request_t;

 *

 */

#include "mca_impl_spec.h"

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

/*

 * MCA type definitions

 */

typedef int mca_int_t;

typedef char mca_int8_t;

typedef short mca_int16_t;

typedef int mca_int32_t;

typedef long long mca_int64_t;

typedef unsigned int mca_uint_t;

typedef unsigned char mca_uint8_t;

typedef unsigned short mca_uint16_t;

typedef unsigned int mca_uint32_t;

typedef unsigned long long mca_uint64_t;

typedef unsigned char mca_boolean_t;

typedef unsigned int mca_node_t;

typedef unsigned int mca_status_t;

typedef unsigned int mca_timeout_t;

typedef unsigned int mca_domain_t;

/* Constants */

#define MCA_TRUE 1

#define MCA_FALSE 0

#define MCA_NULL 0 /* MCA Zero value */

#define MCA_INFINITE (~0) /* Wait forever, no timeout */

/* In/out parameter indication macros */

#ifndef MCA_IN

#define MCA_IN const

#endif /* MCA_IN */

#ifndef MCA_OUT

#define MCA_OUT

#endif /* MCA_OUT */

/* Alignment macros */

#ifdef __GNUC__

#define MCA_DECL_ALIGNED __attribute__ ((aligned (32)))

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 148 of 160

#else

#define MCA_DECL_ALIGNED /* MCA_DECL_ALIGNED alignment macro currently only

 supports GNU compiler */

#endif /* __GNUC__ */

#ifndef MCA_BUF_ALIGN

#define MCA_BUF_ALIGN

#endif

/*

 * MCA organization id's (for assignment of organization specific attribute numbers)

 */

#define MCA_ORG_ID_PSI 0 /* PolyCore Software, Inc. */

#define MCA_ORG_ID_FSL 1 /* Freescale, Inc. */

#define MCA_ORG_ID_MGC 2 /* Mentor Graphics, Corp. */

#define MCA_ORG_ID_TBA 3 /* To be assigned */

/* And so forth */

#ifdef __cplusplus

}

#endif /* __cplusplus */

#endif /* MCA_H */

7.2 mrapi.h

/*

Copyright (c) 2010, The Multicore Association

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

(1) Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

(3) Neither the name of the Multicore Association nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS

IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

#ifndef MRAPI_H

#define MRAPI_H

#include <assert.h>

#include <stddef.h> /* for size_t */

#include <mca_config.h>

#ifdef HAVE_INTTYPES_H

#include <inttypes.h>

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 149 of 160

#endif

#include "mca.h"

/* the mca data types */

typedef mca_domain_t mrapi_domain_t;

typedef mca_node_t mrapi_node_t;

typedef mca_status_t mrapi_status_t;

typedef mca_timeout_t mrapi_timeout_t;

typedef mca_int_t mrapi_int_t;

typedef mca_uint_t mrapi_uint_t;

typedef mca_uint8_t mrapi_uint8_t;

typedef mca_uint16_t mrapi_uint16_t;

typedef mca_uint32_t mrapi_uint32_t;

typedef mca_uint64_t mrapi_uint64_t;

typedef mca_boolean_t mrapi_boolean_t;

/* lock type for reader/writer locks */

typedef enum {

 MRAPI_RWL_READER,

 MRAPI_RWL_WRITER

} mrapi_rwl_mode_t;

/* access type for remote memory */

typedef enum {

 MRAPI_RMEM_DMA,

 MRAPI_RMEM_SWCACHE,

 MRAPI_RMEM_DUMMY

} mrapi_rmem_atype_t;

typedef int mrapi_parameters_t;

#define MRAPI_VERSION "FSL 07_01_2010"

typedef struct {

 char mrapi_version[64];

} mrapi_info_t;

typedef mca_request_t mrapi_request_t;

/* The following keys are either agreed upon apriori among nodes or

 passed via messages. They are usually created by tokenizing a

 string, for example using ftok or the posix IPC_PRIVATE macro. */

typedef int mrapi_shmem_id_t; /* the shared key */

typedef int mrapi_mutex_id_t; /*the shared key */

typedef int mrapi_sem_id_t; /* the shared key */

typedef int mrapi_rwl_id_t; /* the shared key */

typedef int mrapi_rmem_id_t; /* the shared key */

typedef enum {

 MRAPI_RSRC_MEM,

 MRAPI_RSRC_CPU,

 MRAPI_RSRC_CACHE,

 MRAPI_RSRC_DMA,

 MRAPI_RSRC_CROSSBAR,

} mrapi_rsrc_filter_t;

#define MRAPI_TRUE MCA_TRUE

#define MRAPI_FALSE MCA_FALSE

#define MRAPI_NULL MCA_NULL

#define MRAPI_IN const

#define MRAPI_OUT

#define MRAPI_FUNCTION_PTR

#define MRAPI_TIMEOUT_INFINITE (~0) /* Wait forever, no timeout */

#define MRAPI_TIMEOUT_IMMEDIATE 0 /* Return immediately, with

success or failure */

#define MRAPI_NODE_INVALID MCA_NODE_INVALID

#define MRAPI_DOMAIN_INVALID MCA_DOMAIN_INVALID

#define MRAPI_RETURN_VALUE_INVALID MCA_RETURN_VALUE_INVALID

#define MRAPI_NONE 0xffffffff

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 150 of 160

#define MRAPI_MUTEX_ID_ANY 0xffffffff

#define MRAPI_SEM_ID_ANY 0xffffffff

#define MRAPI_RWL_ID_ANY 0xffffffff

#define MRAPI_SHMEM_ID_ANY 0xffffffff

#define MRAPI_RMEM_ID_ANY 0xffffffff

/* implementation defined datatypes */

#include "mrapi_impl_spec.h"

/* The default remote memory access type for this implementation */

#define MRAPI_RMEM_DEFAULT MRAPI_RMEM_DUMMY

#define MRAPI_MAX_STATUS_SIZE 32

/* error codes */

typedef enum {

 MRAPI_SUCCESS,

 MRAPI_ENO_INIT,

 MRAPI_TIMEOUT,

 MRAPI_INCOMPLETE,

 MRAPI_ERR_ATTR_NUM,

 MRAPI_ERR_ATTR_READONLY,

 MRAPI_ERR_ATTR_SIZE,

 MRAPI_ERR_DOMAIN_INVALID,

 MRAPI_ERR_DOMAIN_NOTSHARED,

 MRAPI_ERR_MEM_LIMIT,

 MRAPI_ERR_MUTEX_DELETED,

 MRAPI_ERR_MUTEX_EXISTS,

 MRAPI_ERR_MUTEX_ID_INVALID,

 MRAPI_ERR_MUTEX_INVALID,

 MRAPI_ERR_MUTEX_KEY,

 MRAPI_ERR_MUTEX_LIMIT,

 MRAPI_ERR_MUTEX_LOCKED,

 MRAPI_ERR_MUTEX_LOCKORDER,

 MRAPI_ERR_MUTEX_NOTLOCKED,

 MRAPI_ERR_MUTEX_NOTVALID,

 MRAPI_ERR_NODE_FINALFAILED,

 MRAPI_ERR_NODE_INITIALIZED,

 MRAPI_ERR_NODE_INVALID,

 MRAPI_ERR_NODE_NOTINIT,

 MRAPI_ERR_NOT_SUPPORTED,

 MRAPI_ERR_PARAMETER,

 MRAPI_ERR_REQUEST_CANCELED,

 MRAPI_ERR_REQUEST_INVALID,

 MRAPI_ERR_REQUEST_LIMIT,

 MRAPI_ERR_RMEM_ID_INVALID,

 MRAPI_ERR_RMEM_ATTACH,

 MRAPI_ERR_RMEM_ATTACHED,

 MRAPI_ERR_RMEM_ATYPE,

 MRAPI_ERR_RMEM_ATYPE_NOTVALID,

 MRAPI_ERR_RMEM_BLOCKED,

 MRAPI_ERR_RMEM_BUFF_OVERRUN,

 MRAPI_ERR_RMEM_CONFLICT,

 MRAPI_ERR_RMEM_EXISTS,

 MRAPI_ERR_RMEM_INVALID,

 MRAPI_ERR_RMEM_NOTATTACHED,

 MRAPI_ERR_RMEM_NOTOWNER,

 MRAPI_ERR_RMEM_STRIDE,

 MRAPI_ERR_RMEM_TYPENOTVALID,

 MRAPI_ERR_RSRC_COUNTER_INUSE,

 MRAPI_ERR_RSRC_INVALID,

 MRAPI_ERR_RSRC_INVALID_CALLBACK,

 MRAPI_ERR_RSRC_INVALID_EVENT,

 MRAPI_ERR_RSRC_INVALID_SUBSYSTEM,

 MRAPI_ERR_RSRC_INVALID_TREE,

 MRAPI_ERR_RSRC_NOTDYNAMIC,

 MRAPI_ERR_RSRC_NOTOWNER,

 MRAPI_ERR_RSRC_NOTSTARTED,

 MRAPI_ERR_RSRC_STARTED,

 MRAPI_ERR_RWL_DELETED,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 151 of 160

 MRAPI_ERR_RWL_EXISTS,

 MRAPI_ERR_RWL_ID_INVALID,

 MRAPI_ERR_RWL_INVALID,

 MRAPI_ERR_RWL_LIMIT,

 MRAPI_ERR_RWL_LOCKED,

 MRAPI_ERR_RWL_NOTLOCKED,

 MRAPI_ERR_SEM_DELETED,

 MRAPI_ERR_SEM_EXISTS,

 MRAPI_ERR_SEM_ID_INVALID,

 MRAPI_ERR_SEM_INVALID,

 MRAPI_ERR_SEM_LIMIT,

 MRAPI_ERR_SEM_LOCKED,

 MRAPI_ERR_SEM_LOCKLIMIT,

 MRAPI_ERR_SEM_NOTLOCKED,

 MRAPI_ERR_SHM_ATTACHED,

 MRAPI_ERR_SHM_ATTCH,

 MRAPI_ERR_SHM_EXISTS,

 MRAPI_ERR_SHM_ID_INVALID,

 MRAPI_ERR_SHM_INVALID,

 MRAPI_ERR_SHM_NODES_INCOMPAT,

 MRAPI_ERR_SHM_NODE_NOTSHARED,

 MRAPI_ERR_SHM_NOTATTACHED

} mrapi_status_flags;

typedef enum {

 MRAPI_MUTEX_RECURSIVE,

 MRAPI_ERROR_EXT,

 MRAPI_DOMAIN_SHARED,

 MRAPI_SHMEM_RESOURCE,

 MRAPI_SHMEM_ADDRESS,

 MRAPI_SHMEM_SIZE

} attributes;

typedef enum {

 MRAPI_RSRC_MEM_BASEADDR,

 MRAPI_RSRC_MEM_NUMWORDS,

 MRAPI_RSRC_MEM_WORDSIZE,

} mrapi_rsrc_mem_attrs;

typedef enum {

 MRAPI_RSRC_CACHE_SIZE,

 MRAPI_RSRC_CACHE_LINE_SIZE,

 MRAPI_RSRC_CACHE_ASSOCIATIVITY,

 MRAPI_RSRC_CACHE_LEVEL,

} mrapi_rsrc_cache_attrs;

typedef enum {

 MRAPI_RSRC_CPU_FREQUENCY,

 MRAPI_RSRC_CPU_TYPE,

 MRAPI_RSRC_CPU_ID,

} mrapi_rsrc_cpu_attrs;

/*---

 Function declarations: misc

 ---*/

char* mrapi_display_status(mrapi_status_t status,char* status_message,size_t size);

void mrapi_set_debug_level(int d);

/*---

 MRAPI

 ---*/

void mrapi_initialize(

 MRAPI_IN mrapi_domain_t domain_id,

 MRAPI_IN mrapi_node_t node_id,

 MRAPI_IN mrapi_parameters_t init_parameters,

 MRAPI_OUT mrapi_info_t* mrapi_info,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_finalize(

 MRAPI_OUT mrapi_status_t* status

);

mrapi_domain_t mrapi_domain_id_get(

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 152 of 160

 MRAPI_OUT mrapi_status_t* status

);

mrapi_node_t mrapi_node_id_get(

 MRAPI_OUT mrapi_status_t* status

);

mrapi_mutex_hndl_t mrapi_mutex_create(

 MRAPI_IN mrapi_mutex_id_t mutex_id,

 MRAPI_IN mrapi_mutex_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_mutex_init_attributes(

 MRAPI_OUT mrapi_mutex_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_mutex_set_attribute (

 MRAPI_OUT mrapi_mutex_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attr_size,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_mutex_get_attribute (

 MRAPI_IN mrapi_mutex_hndl_t mutex,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_mutex_hndl_t mrapi_mutex_get(

 MRAPI_IN mrapi_mutex_id_t mutex_id,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_mutex_delete(

 MRAPI_IN mrapi_mutex_hndl_t mutex,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_mutex_lock (

 MRAPI_IN mrapi_mutex_hndl_t mutex,

 MRAPI_OUT mrapi_key_t* lock_key,

 MRAPI_IN mrapi_timeout_t timeout,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_boolean_t mrapi_mutex_trylock(

 MRAPI_IN mrapi_mutex_hndl_t mutex,

 MRAPI_OUT mrapi_key_t* lock_key,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_mutex_unlock(

 MRAPI_IN mrapi_mutex_hndl_t mutex,

 MRAPI_IN mrapi_key_t* lock_key,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_sem_hndl_t mrapi_sem_create(

 MRAPI_IN mrapi_sem_id_t sem_id,

 MRAPI_IN mrapi_sem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t shared_lock_limit,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_sem_init_attributes(

 MRAPI_OUT mrapi_sem_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_sem_set_attribute(

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 153 of 160

 MRAPI_OUT mrapi_sem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attr_size,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_sem_get_attribute (

 MRAPI_IN mrapi_sem_hndl_t sem,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_sem_hndl_t mrapi_sem_get(

 MRAPI_IN mrapi_sem_id_t sem_id,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_sem_delete(

 MRAPI_IN mrapi_sem_hndl_t sem,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_sem_lock(

 MRAPI_IN mrapi_sem_hndl_t sem,

 MRAPI_IN mrapi_timeout_t timeout,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_boolean_t mrapi_sem_trylock(

 MRAPI_IN mrapi_sem_hndl_t sem,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_sem_unlock (

 MRAPI_IN mrapi_sem_hndl_t sem,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_rwl_hndl_t mrapi_rwl_create(

 MRAPI_IN mrapi_rwl_id_t rwl_id,

 MRAPI_IN mrapi_rwl_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t reader_lock_limit,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rwl_init_attributes(

 MRAPI_OUT mrapi_rwl_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rwl_set_attribute(

 MRAPI_OUT mrapi_rwl_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attr_size,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rwl_get_attribute (

 MRAPI_IN mrapi_rwl_hndl_t rwl,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_rwl_hndl_t mrapi_rwl_get(

 MRAPI_IN mrapi_rwl_id_t rwl_id,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rwl_delete(

 MRAPI_IN mrapi_rwl_hndl_t rwl,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 154 of 160

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rwl_lock(

 MRAPI_IN mrapi_rwl_hndl_t rwl,

 MRAPI_IN mrapi_rwl_mode_t mode,

 MRAPI_IN mrapi_timeout_t timeout,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_boolean_t mrapi_rwl_trylock(

 MRAPI_IN mrapi_rwl_hndl_t rwl,

 MRAPI_IN mrapi_rwl_mode_t mode,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rwl_unlock (

 MRAPI_IN mrapi_rwl_hndl_t rwl,

 MRAPI_IN mrapi_rwl_mode_t mode,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_shmem_hndl_t mrapi_shmem_create(

 MRAPI_IN mrapi_shmem_id_t shmem_id,

 MRAPI_IN mrapi_uint_t size,

 MRAPI_IN mrapi_node_t* nodes,

 MRAPI_IN mrapi_uint_t nodes_size,

 MRAPI_IN mrapi_shmem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attr_size,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_shmem_init_attributes(

 MRAPI_OUT mrapi_shmem_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_shmem_set_attribute(

 MRAPI_OUT mrapi_shmem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attr_size,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_shmem_get_attribute(

 MRAPI_IN mrapi_shmem_hndl_t shmem,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_shmem_hndl_t mrapi_shmem_get(

 MRAPI_IN mrapi_shmem_id_t shmem_id,

 MRAPI_OUT mrapi_status_t* status

);

void* mrapi_shmem_attach(

 MRAPI_IN mrapi_shmem_hndl_t shmem,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_shmem_detach(

 MRAPI_IN mrapi_shmem_hndl_t shmem,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_shmem_delete(

 MRAPI_IN mrapi_shmem_hndl_t shmem,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_rmem_hndl_t mrapi_rmem_create(

 MRAPI_IN mrapi_rmem_id_t rmem_id,

 MRAPI_IN void* mem,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 155 of 160

 MRAPI_IN mrapi_rmem_atype_t access_type,

 MRAPI_IN mrapi_rmem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t size,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_init_attributes(

 MRAPI_OUT mrapi_rmem_attributes_t* attributes,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_set_attribute(

 MRAPI_OUT mrapi_rmem_attributes_t* attributes,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_IN void* attribute,

 MRAPI_IN size_t attr_size,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_get_attribute(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint_t attribute_num,

 MRAPI_OUT void* attribute,

 MRAPI_IN size_t attribute_size,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_rmem_hndl_t mrapi_rmem_get(

 MRAPI_IN mrapi_rmem_id_t rmem_id,

 MRAPI_IN mrapi_rmem_atype_t access_type,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_attach(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_rmem_atype_t access_type,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_detach(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_delete(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_read(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint32_t rmem_offset,

 MRAPI_OUT void* local_buf,

 MRAPI_IN mrapi_uint32_t local_offset,

 MRAPI_IN mrapi_uint32_t bytes_per_access,

 MRAPI_IN mrapi_uint32_t num_strides,

 MRAPI_IN mrapi_uint32_t rmem_stride,

 MRAPI_IN mrapi_uint32_t local_stride,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_read_i(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint32_t rmem_offset,

 MRAPI_OUT void* local_buf,

 MRAPI_IN mrapi_uint32_t local_offset,

 MRAPI_IN mrapi_uint32_t bytes_per_access,

 MRAPI_IN mrapi_uint32_t num_strides,

 MRAPI_IN mrapi_uint32_t rmem_stride,

 MRAPI_IN mrapi_uint32_t local_stride,

 MRAPI_OUT mrapi_request_t* mrapi_request,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_write(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 156 of 160

 MRAPI_IN mrapi_uint32_t rmem_offset,

 MRAPI_IN void* local_buf,

 MRAPI_IN mrapi_uint32_t local_offset,

 MRAPI_IN mrapi_uint32_t bytes_per_access,

 MRAPI_IN mrapi_uint32_t num_strides,

 MRAPI_IN mrapi_uint32_t rmem_stride,

 MRAPI_IN mrapi_uint32_t local_stride,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_write_i(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_IN mrapi_uint32_t rmem_offset,

 MRAPI_IN void* local_buf,

 MRAPI_IN mrapi_uint32_t local_offset,

 MRAPI_IN mrapi_uint32_t bytes_per_access,

 MRAPI_IN mrapi_uint32_t num_strides,

 MRAPI_IN mrapi_uint32_t rmem_stride,

 MRAPI_IN mrapi_uint32_t local_stride,

 MRAPI_OUT mrapi_request_t* mrapi_request,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_flush(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_rmem_synch(

 MRAPI_IN mrapi_rmem_hndl_t rmem,

 MRAPI_OUT mrapi_status_t* status

);

mrapi_boolean_t mrapi_test(

 MRAPI_IN mrapi_request_t* request,

 MRAPI_OUT size_t* size,

 MRAPI_OUT mrapi_status_t* mrapi_status);

);

mrapi_boolean_t mrapi_wait(

 MRAPI_IN mrapi_request_t* request,

 MRAPI_OUT size_t* size,

 MRAPI_IN mrapi_timeout_t timeout,

 MRAPI_OUT mrapi_status_t* mrapi_status

);

mrapi_uint_t mrapi_wait_any(

 MRAPI_IN size_t number,

 MRAPI_IN mrapi_request_t* requests,

 MRAPI_OUT size_t* size,

 MRAPI_IN mrapi_timeout_t timeout,

 MRAPI_OUT mrapi_status_t* mrapi_status

);

void mrapi_cancel(

 MRAPI_IN mrapi_request_t* request,

 MRAPI_OUT mrapi_status_t* mrapi_status

);

mrapi_resource_t* mrapi_resources_get(

 MRAPI_IN mrapi_rsrc_filter_t subsystem_filter,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_resource_get_attribute(

 MRAPI_IN mrapi_resource_t* resource,

 MRAPI_IN mrapi_uint_t attribute_number,

 MRAPI_OUT void* attribute_value,

 MRAPI_IN size_t attr_size,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_dynamic_attribute_start(

 MRAPI_IN mrapi_resource_t* resource,

 MRAPI_IN mrapi_uint_t attribute_number,

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 157 of 160

 MRAPI_FUNCTION_PTR void (*rollover_callback) (void),

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_dynamic_attribute_reset(

 MRAPI_IN mrapi_resource_t *resource,

 MRAPI_IN mrapi_uint_t attribute_number,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_dynamic_attribute_stop(

 MRAPI_IN mrapi_resource_t* resource,

 MRAPI_IN mrapi_uint_t attribute_number,

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_resource_register_callback(

 MRAPI_IN mrapi_event_t event,

 MRAPI_IN unsigned int frequency,

 MRAPI_FUNCTION_PTR void (*callback_function) (mrapi_event_t event),

 MRAPI_OUT mrapi_status_t* status

);

void mrapi_resource_tree_free(

 mrapi_resource_t* MRAPI_IN * root_ptr,

 MRAPI_OUT mrapi_status_t* status

);

#endif

#ifdef __cplusplus

extern }

#endif /* __cplusplus */

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 158 of 160

8. Appendix C: MRAPI License Agreement

PLEASE READ THIS MULTICORE ASSOCIATION LICENSE AGREEMENT ("LICENSE") CAREFULLY
BEFORE DOWNLOADING THE MULTICORE ASSOCIATION’S MULTICORE RESOURCE
MANAGEMENT API (MRAPI) SPECIFICATION. BY USING THE MRAPI, YOU ARE AGREEING TO
BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE TERMS OF THIS
LICENSE, DO NOT DOWNLOAD OR USE THE MRAPI SPECIFICATION.

IMPORTANT NOTE: If you are uncertain about your right to use the MULTICORE ASSOCIATION’S
MRAPI SPECIFICATION, you should contact your legal advisor.

1. General. The specification and/or documentation accompanying this License whether on disk, in
read only memory, on any other media or in any other form (collectively the "MRAPI SPECIFICATION")
are licensed, not sold, to you by the MULTICORE ASSOCIATION for use only under the terms of this
License, and MULTICORE ASSOCIATION reserves all rights not expressly granted to you. The rights
granted herein are limited in scope per the terms of this License AND are also limited as to the source of
the rights being granted. The rights granted under this License are limited to those rights that
MULTICORE ASSOCIATION's members and its licensors' have granted to MULTICORE
ASSOCIATION for incorporation and sublicensing as a part of the MULTICORE ASSOCIATION MRAPI
SPECIFICATION, and do not include any other rights. The terms of this License will govern any
upgrades provided by MULTICORE ASSOCIATION that replace and/or supplement the original
MULTICORE ASSOCIATION MRAPI SPECIFICATION, unless such upgrade is accompanied by a
separate license in which case the terms of that license will govern.

2. Permitted License Uses and Restrictions. This License allows you to download and use the
MULTICORE ASSOCIATION MRAPI SPECIFICATION only as expressly permitted under this License.
You may make only that number of copies of the MRAPI SPECIFICATION as are reasonably necessary
in order to effectuate the purposes for which the MRAPI SPECIFICATION is intended. You may not
make the MRAPI SPECIFICATION available over a network where it could be used by multiple
platforms or multiple users at the same time or for use via data hosting, time sharing or service bureau
usage. Except as and only to the extent expressly permitted in this License or by applicable law, you
may not copy, modify, or create derivative works of the MRAPI SPECIFICATION or any part thereof.
THE MRAPI SPECIFICATION IS NOT INTENDED FOR USE IN THE OPERATION OF NUCLEAR
FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL
SYSTEMS, LIFE SUPPORT MACHINES OR OTHER EQUIPMENT IN WHICH THE FAILURE OF THE
MRAPI SPECIFICATION COULD LEAD TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL
OR ENVIRONMENTAL DAMAGE.

3. Enhancements by MULTICORE ASSOCIATION. In the event that at any time MULTICORE
ASSOCIATION makes any enhancement, update, or modification to the MRAPI SPECIFICATION or
becomes the owner of any new enhancement, update, or modification to the MRAPI SPECIFICATION,
then upon notice to you, you shall have the same right and license to use and exploit the same as it is
granted hereunder with respect to the original MRAPI SPECIFICATION. You agree that all rights in and
to enhancements, updates, and modifications effected by MULTICORE ASSOCIATION, if any, to the
MRAPI SPECIFICATION, shall remain the sole and exclusive property of MULTICORE ASSOCIATION.
Nothing contained herein shall obligate MULTICORE ASSOCIATION to create any new enhancement,
update or modifications to the MULTICORE ASSOCIATION MRAPI SPECIFICATION, to make such
enhancement, update or modifications available free of charge or to provide any maintenance and
technical support services.

4. Enhancements by You. You shall have no right to independently modify, improve, or enhance the
MULTICORE ASSOCIATION MRAPI SPECIFICATION.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 159 of 160

5. Use of Trademark. You agree that you will not, without the prior written consent of MULTICORE
ASSOCIATION, use in advertising, publicity, packaging, labeling, or otherwise any trade name,
trademark, service mark, symbol, or any other identification owned by MULTICORE ASSOCIATION to
identify any of its products or services.

6. Delivery. The MULTICORE ASSOCIATION MRAPI SPECIFICATION will be available for
downloading on MULTICORE ASSOCIATION’s website in accordance with the current policies and
procedures of MULTICORE ASSOCIATION. MULTICORE ASSOCIATION reserves the right to modify
such procedures in its sole and absolute discretion.

7. Term and Termination.

 a. Term. The term of this Agreement shall continue so long as you are not in Default as set forth in
Section 8(b).

 b. Termination. MULTICORE ASSOCIATION shall have the right to terminate this Agreement and
the License granted herein if you commit an act of or are subject to any Default. A Default means you
breach a term or condition of this Agreement, including, but not limited to, a breach of the confidentiality
provisions or payment provisions hereof or you assign or purport to assign any of the rights granted
herein without the prior written approval of MULTICORE ASSOCIATION. Upon the occurrence of a
Default, this Agreement shall immediately terminate. MULTICORE ASSOCIATION’s rights as set forth
in this Section 8(b) are cumulative and, except as provided herein, are in addition to any other rights
MULTICORE ASSOCIATION may have at law or in equity.

 c. Effect of Termination. Upon the expiration or termination of this Agreement, the rights granted to
you hereunder shall immediately cease and discontinue, and you shall be required to immediately return
any and all materials and deliverables provided to you under this Agreement, including without
limitation, the MULTICORE ASSOCIATION MRAPI SPECIFICATION. The provisions contained in
Sections 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 shall survive any such termination or expiration.

8. No Warranty. MULTICORE ASSOCIATION provides no warranty for the MULTICORE
ASSOCIATION MRAPI SPECIFICATION.

9. Disclaimer of Warranties. You expressly acknowledge and agree that use of the MULTICORE
ASSOCIATION MRAPI SPECIFICATION is at your sole risk and that the entire risk as to satisfactory
quality, performance, accuracy and effort is with you. The MULTICORE ASSOCIATION MRAPI
SPECIFICATION is provided "as is", with all faults and without warranty of any kind, and MULTICORE
ASSOCIATION and MULTICORE ASSOCIATION's licensors (collectively referred to as "MULTICORE
ASSOCIATION" for the purposes of sections 10 and 11) hereby disclaim all warranties and conditions
with respect to the MULTICORE ASSOCIATION MRAPI SPECIFICATION, either express, implied or
statutory, including, but not limited to, the implied warranties and/or conditions of merchantability, of
satisfactory quality, of fitness for a particular purpose, of accuracy, of quiet enjoyment, and non-
infringement of third party rights. MULTICORE ASSOCIATION does not warrant against interference
with your enjoyment of the MULTICORE ASSOCIATION MRAPI SPECIFICATION, that the functions
contained in the MULTICORE ASSOCIATION MRAPI SPECIFICATION will meet your requirements,
that the operation of the MULTICORE ASSOCIATION MRAPI SPECIFICATION will be uninterrupted or
error-free, or that defects in the MULTICORE ASSOCIATION MRAPI SPECIFICATION will be
corrected. No oral or written information or advice given by MULTICORE ASSOCIATION or an
MULTICORE ASSOCIATION authorized representative shall create a warranty. Should the
MULTICORE ASSOCIATION MRAPI SPECIFICATION prove defective, you assume the entire cost of
all necessary servicing, repair or correction. Some jurisdictions do not allow the exclusion of implied
warranties or limitations on applicable statutory rights of a consumer, so the above exclusion and
limitations may not apply to you.

10. Potential Misuse of MULTICORE ASSOCIATION MRAPI SPECIFICATION. You hereby
acknowledge and represent that you have been expressly warned by MULTICORE ASSOCIATION that
the MULTICORE ASSOCIATION MRAPI SPECIFICATION may be incompatible with any application or
end-user product, and that such misuse of the MULTICORE ASSOCIATION MRAPI SPECIFICATION
could result in significant property damage and/or bodily harm.

 MRAPI API Specification V1.0

The Multicore Association November 15, 2010 Page 160 of 160

11. Limitation of Liability. TO the extent not prohibited by law, in no event shall MULTICORE
ASSOCIATION be liable for personal injury, or any incidental, special, indirect or consequential
damages whatsoever, including, without limitation, damages for loss of profits, loss of data, business
interruption or any other commercial damages or losses, arising out of or related to your use or inability
to use the MULTICORE ASSOCIATION MRAPI SPECIFICATION, however caused, regardless of the
theory of liability (contract, tort or otherwise) and even if MULTICORE ASSOCIATION has been advised
of the possibility of such damages. some jurisdictions do not allow the limitation of liability for personal
injury, or of incidental or consequential damages, so this limitation may not apply to you. In no event
shall MULTICORE ASSOCIATION's total liability to you for all damages (other than as may be required
by applicable law in cases involving personal injury) exceed the amount of fifty dollars ($50.00). The
foregoing limitations will apply even if the above stated remedy fails of its essential purpose.

12. Export Law Assurances. You may not use or otherwise export or re-export the MULTICORE
ASSOCIATION MRAPI SPECIFICATION except as authorized by United States law and the laws of the
jurisdiction in which the MULTICORE ASSOCIATION MRAPI SPECIFICATION was obtained. In
particular, but without limitation, the MULTICORE ASSOCIATION MRAPI SPECIFICATION may not be
exported or re-exported (a) into (or to a national or resident of) any U.S. embargoed countries (currently
Cuba, Iran, Iraq, Libya, North Korea, Sudan and Syria), or (b) to anyone on the U.S. Treasury
Department's list of Specially Designated Nationals or the U.S. Department of Commerce Denied
Person's List or Entity List. By using the MULTICORE ASSOCIATION MRAPI SPECIFICATION, you
represent and warrant that you are not located in, under control of, or a national or resident of any such
country or on any such list.

13. Relationship of Parties. Neither this Agreement, nor any terms and conditions contained herein,
may be construed as creating or constituting a partnership, joint venture, or agency relationship
between the parties. Neither party will have the power to bind the other or incur obligations on the other
party's behalf without the other party's prior written consent.

14. Waiver. No failure of either party to exercise or enforce any of its rights under this Agreement will
act as a waiver of such rights.

15. Controlling Law and Severability. This License will be governed by and construed in accordance
with the laws of the State of California, as applied to agreements entered into and to be performed
entirely within California between California residents. This License shall not be governed by the United
Nations Convention on Contracts for the International Sale of Goods, the application of which is
expressly excluded. If for any reason a court of competent jurisdiction finds any provision, or portion
thereof, to be unenforceable, the remainder of this License shall continue in full force and effect.

16. Complete Agreement; Governing Language. This License constitutes the entire agreement
between the parties with respect to the use of the MULTICORE ASSOCIATION MRAPI
SPECIFICATION licensed hereunder and supersedes all prior or contemporaneous understandings
regarding such subject matter. No amendment to or modification of this License will be binding unless
in writing and signed by MULTICORE ASSOCIATION. Any translation of this License is done for local
requirements and in the event of a dispute between the English and any non-English versions, the
English version of this License shall govern.

