
 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 1 of 58

Software-Hardware Interface for Multi-Many-Core

(SHIM) Specification

V1.00 Final

Document ID: SHIM Specification

Document Version: 1.00

Status: Final

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 2 of 58

Copyright © 2015 The Multicore Association, Inc.

All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated

into any language, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without prior written permission from The Multicore Association, Inc.

All copyright, confidential information, patents, design rights and all other intellectual property rights of

whatsoever nature contained herein are and shall remain the sole and exclusive property of Multicore Association.

The information furnished herein is believed to be accurate and reliable. However, no responsibility is assumed by

The Multicore Association, Inc. for its use, or for any infringements of patents or other rights of third parties

resulting from its use.

The Multicore Association, Inc. name and The Multicore Association, Inc. logo are trademarks or registered

trademarks of The Multicore Association, Inc. All other trademarks are the property of their respective owners.

The Multicore Association, Inc.

PO Box 4854

El Dorado Hills, CA 95762

530-672-9113

www.multicore-association.org

http://www.multicore-association.org/

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 3 of 58

Table of Contents

Preface .. 6

Definitions .. 6

1. Introduction .. 7

1.1 Overview .. 7
1.2 Interface ... 7
1.3 SHIM Editor ... 9

2. SHIM Concepts .. 12

2.1 Topology - ComponentSet .. 12
2.2 Memory - AddressSpaceSet... 12
2.3 Inter-core communication – CommunicationSet ... 13
2.4 Performance ... 14

2.4.1 General ... 14
2.4.2 Latency and Pitch ... 15
2.4.3 Using triplets .. 15

2.5 Software View - what is in and what is not .. 16
2.6 XML .. 17

2.6.1 Data Binding .. 17
2.6.2 Who Creates SHIM XML .. 17

2.7 Configuration... 18
2.7.1 General ... 18
2.7.2 Common Configuration File (CCF) ... 18

2.8 Reference Authoring Tools ... 20
2.9 Roadmap ... 20

2.9.1 Componentization of SHIM XML .. 21
2.9.2 Hardware-Related Software Properties ... 21
2.9.3 Schema Refinement for Smaller XML.. 21

3. SHIM Interface ... 22

3.1 shim.xsd .. 22
3.2 Conventions .. 28
3.3 Enumeration .. 29
3.4 SystemConfiguration ... 31

3.4.1 ClockFrequency .. 31
3.5 ComponentSet .. 32

3.5.1 MasterComponent .. 32
3.5.2 SlaveComponent ... 33
3.5.3 Cache.. 34
3.5.4 AccessTypeSet ... 34
3.5.5 AccessType ... 35
3.5.6 CommonInstructionSet ... 35
3.5.7 Instruction ... 36
3.5.8 Performance .. 36
3.5.9 Latency ... 36
3.5.10 Pitch .. 37

3.6 AddressSpaceSet .. 38
3.6.1 AddressSpace ... 38
3.6.2 SubSpace ... 39
3.6.3 MemoryConsistencyModel .. 39
3.6.4 MasterSlaveBindingSet .. 40
3.6.5 MasterSlaveBinding .. 40
3.6.6 Accessor ... 40
3.6.7 PerformanceSet .. 40

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 4 of 58

3.7 CommunicationSet ... 41
3.7.1 FIFOCommunication .. 41
3.7.2 SharedRegisterCommunication .. 42
3.7.3 InterruptCommunication ... 42
3.7.4 SharedMemoryCommunication .. 43
3.7.5 EventCommunication ... 43
3.7.6 ConnectionSet ... 44
3.7.7 Connection ... 44

4. Use Cases ... 45

4.1 Performance Estimation: Auto-Parallelizing Compiler .. 45
4.1.1 Using “CommonInstructionSet” ... 45
4.1.2 Using “PerformanceSet” .. 45
4.1.3 Using “Cache” .. 45
4.1.4 Using “FIFOCommunication”... 46

4.2 Tool Configuration - RTOS Configuration Tool .. 46
4.2.1 Using “ClockFrequency” .. 46
4.2.2 Using “SubSpace” ... 46

4.3 Hardware Modeling .. 47

5. SHIM XML Authoring Rules and Guidelines .. 48

5.1 File Name [Rule] ... 48
5.2 Naming of Various Objects [Rule] ... 49
5.3 Level of Detail and Precision [Guideline] .. 49

6. Common Configuration File (CCF) ... 50

6.1 Concept ... 50
6.1.1 Multiple Hardware Configuration .. 50
6.1.2 Vendor-Specific Hardware Features Affecting SHIM Objects 50
6.1.3 Configuration Tool User Interface... 50

6.2 Interface ... 51
6.2.1 XML Schema ... 51
6.2.2 Semantics .. 53
6.2.3 FormType ... 53
6.2.4 ConfigurationSet ... 53
6.2.5 Configuration ... 54
6.2.6 Item ... 54
6.2.7 Expression ... 54
6.2.8 Def ... 55

6.3 Examples ... 55
6.3.1 Generic ... 55
6.3.2 Nested configuration ... 55

7. FAQ ... 57

8. Appendix A: Acknowledgements ... 58

TABLE 1. SHIM REPRESENTATION OF HARDWARE COMPONENTS ... 12
TABLE 2. INTER-CORE COMMUNICATION CLASSES ... 13
TABLE 3. PERFORMANCE PROPERTIES IN SHIM.. 14
TABLE 4. USING TRIPLES ... 16
TABLE 5. PERFORMANCE ESTIMATION USE CASE .. 45
TABLE 6. TOOL CONFIGURATION USE CASE .. 46
TABLE 7. HARDWARE MODELING USE CASE ... 47

FIGURE 1. SHIM PROVIDES THE INTERFACE BETWEEN THE HARDWARE AND THE SOFTWARE TOOLS 7
FIGURE 2. THE SHIM ELEMENTS MAPPED TO A PSEUDO-MULTICORE HARDWARE .. 8

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 5 of 58

FIGURE 3. CLASS DIAGRAM REPRESENTATION OF THE WHOLE SHIM XML SCHEMA .. 10
FIGURE 4. SHIM XML FILE EXAMPLE ... 11
FIGURE 5. SHIM EDITOR MAIN WINDOW ... 11
FIGURE 6. LATENCY AND PITCH REPRESENT THE PRIMARY PERFORMANCE CHARACTERISTICS. 15
FIGURE 7. CCF EXAMPLE .. 19
FIGURE 8. GUI GENERATED BY CCF .. 20
FIGURE 9. COMMON CONFIGURATION FILE (CCF) CLASS DIAGRAM ... 51

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 6 of 58

Preface

This document is intended primarily for tool developers and hardware developers who would use SHIM to

exchange hardware description for software tools. It also attempts to provide software developers with insights

into what hardware information is described in SHIM to foster understanding of the intention and the extent of

SHIM.

This document begins with the introduction to SHIM, providing the background, the overall concept, and model. It

is followed by a chapter detailing the concept of SHIM, such as the purpose, scope, design, interface, limitation,

providing the basic idea why SHIM is as specified in this document, and also trying to explain the basic principles

for future extension of the specification. A chapter describing the interface follows, which is a description of

SHIM XML schema and APIs that are mostly derived directly from the schema via XML data binding technique.

A chapter providing some of the detailed use cases follows, allowing the reader to gain insights into how SHIM

can be used in action. Finally, this document ends with various Appendixes providing further detailed information.

Definitions

All new terms are defined at the first appearance, either in the main text body or as a footnote.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 7 of 58

1. Introduction

1.1 Overview

Multicore processors have become the norm, and processors with tens, and even more than a hundred cores are

emerging. These multicore processors vary not only in the number of cores, but also in inter-connects, cluster

organization, and memory systems (including hierarchy and cache coherency), among others. While the trend for

an increasing number of cores is both natural and unavoidable from a processor design perspective, this poses

tremendous challenges to the software developers to cope with the significant hardware variance, while bearing a

burden to re-use the existing and newly created software for different hardware. Moreover, all this must occur

while achieving the performance expected from the multicore processors, which requires deep understanding of

the specific multicore architecture. Various tools, such as auto-parallelizing compilers, parallelization tools,

OS/middleware configurators, and performance analysis tools, aid developers to design, implement, and analyze

the software. However, these tools must comprehend the complex multicore processor, transferring the burden to

the tool developers. Therefore, it is critical to lower the cost of supporting new multicore hardware by various

tools, but there has been a lack of effort in academia or industry to solve these issues, thereby hindering the

development of the multicore tool eco-system.

The SHIM, Software-Hardware Interface for Multi-many-core, is a joint industrial and academic effort to

standardize the interface between the multicore hardware and the software tools. As a result, we aim to lower the

cost of supporting new multicore hardware using the standard interface. This will encourage the development of

new innovative multicore tools, resulting in a richer eco-system of multicore technologies, which in turn should

benefit system developers, semiconductor vendors, and tool vendors.

1.2 Interface

The SHIM is defined as an XML schema. A multicore hardware implementation is expressed as a SHIM XML file

which can be used by various tools (Figure 1).

Figure 1. SHIM provides the interface between the hardware and the software tools

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 8 of 58

The SHIM XML file has a tree structure (Figure 4. SHIM XML file example) with three top level components,

namely ComponentSet, “AddressSpaceSet, and CommunicationSet, each containing further child elements. The

ComponentSet contains MasterComponent (representing a processor or accelerator) and SlaveComponent

(representing a memory block or memory subsystem). The AddressSpaceSet contains one or more AddressSpace,

which in turn contains SubSpace. Finally the CommunicationSet contains any number of Communication elements,

describing the connection and communication between a pair of MasterComponents.

Figure 2. The SHIM elements mapped to a pseudo-multicore hardware

A ComponentSet can nest itself. For example, it can be used to express a chip that contains multiple hardware

clusters, each cluster containing multiple cores with a cluster local memory. It can also be used to describe a

board, which in turn may contain one or more multicore chips. A ComponentSet can even be used to describe a

system with multiple boards, each board connected via PCI Express, for example. As such, the ComponentSet tree

describes the multicore hardware system topology. This topological architectural information is important for

software tools to be able to identify the number of cores, location of the memory devices, and how cores are

organized into different clusters.

Since SHIM is for software tools, it is essential to understand from a software perspective, the connection and

communication mechanism between the cores (including accelerators), as well as how these cores can access the

different memories. The former is described as CommunicationSet containing different communication classes. A

simple example of defined classes is InterruptCommunication, which contains one or more “connection” class,

which binds a pair of MasterComponents. For memory access, the SubSpace contained in the AddressSpace

includes its start address and size and one or more MasterSlaveBinding, containing references to a

MasterComponent and SlaveComponent, describing which core/accelerator can access which memory through the

address range.

The hardware architectural information described so far allows tools to understand the hardware topology, and

how the cores and memory devices are connected. However, this alone is often insufficient for many tools, since

the application software supported by these tools must not just ‘run’, but run with performance qualifiers. To

achieve this, the tools must ‘estimate’ the rough performance so that the system designers and software developers

know the expected performance from the given application and multicore hardware. Therefore, SHIM, in addition

to the hardware topological information, describes the performance properties associated with the processor cycles

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 9 of 58

consumed to perform the various core-to-core communication (CommunicationSet) and also the memory access

cycles by different cores and accelerators. The performance is described as Performance element, which contains

Latency and Pitch, expressed in processor cycles. The Performance element exists for each CommunicationSet, for

each specific pair of two MasterComponents. For memory access performance, for each MasterSlaveBinding of

each SubSpace, and for each AccessType, which are defined for each MasterComponent, a specific Performance

element is included. So for each different access type (e.g., read or write, word access or double word access), a

different Performance element is provided. The cycles can be described in a form of triplet, which are ‘best’,

‘typical’, and ‘worst’, to accommodate the possible performance variance. The tool must be intelligent enough to

benefit from these figures, such as analyzing the application code if it is issuing a sequential memory access,

which generally falls into use of the ‘best’ cycles. Note that the cycles mentioned here are processor-cycles, and

ClockFrequency of MasterComponent overrides that of SystemConfiguration if they are not identical.

1.3 SHIM Editor

Although a SHIM XML schema is relatively simple, as can be seen on the UML Class diagram representation of

the whole SHIM XML schema (Figure 3), the resulting SHIM XML file can be quite large, mostly due to all the

Performance element descriptions for all types of memory accesses. Writing it manually can be tedious and error-

prone, so we have developed an editor tool called the SHIM Editor, to foster authoring a SHIM XML file. The

generated SHIM XML file is shown in Figure 4, and the SHIM Editor prototype’s main window is shown in

Figure 5.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 10 of 58

Figure 3. Class diagram representation of the whole SHIM XML schema

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 11 of 58

Figure 4. SHIM XML file example

Figure 5. SHIM Editor main window

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 12 of 58

2. SHIM Concepts

This section describes the major SHIM concepts, providing the basic idea why SHIM is as specified in this

document, and also attempts to indicate the principle for future extension of the specification. This chapter should

provide a foundation for understanding the SHIM interface, so it is strongly recommended to read this thoroughly

before diving into the interface details.

2.1 Topology - ComponentSet

A simple hardware setup may consist of a single processor core and a single memory – however, the multi-many-

core hardware has multiple processor cores and memory devices of various types in various configurations. The

combination and configuration of processor and memory characterizes the multi-many-core hardware, and it is

essential for software tools to comprehend them.

SHIM expresses the particular mix of processors and memory devices as ‘topology’. In the electrical circuits’

terminology, topology “is the form taken by the network of interconnections of the circuit components. Different

specific values or ratings of the components are regarded as being the same topology. Topology is not concerned

with the physical layout of components in a circuit, nor with their positions on a circuit diagram. It is only

concerned with what connections exist between the components. There may be numerous physical layouts and

circuit diagrams that all amount to the same topology
1
.” From the SHIM’s perspective, the topology is extended

further. In addition to processor cores and memory devices, which are components in the electrical terminology,

we also include ‘clusters’, which is a particular set or grouping of processor cores and memory devices. Usually

there are electrical connections between a cluster and other hardware elements, however SHIM does not

necessarily deal with actual electrical connections, so the cluster may not form any connection. However, it is

critical for software tools to see how processor cores and memory devices are grouped as it is often an indication

of a performance difference, therefore SHIM includes cluster as a part of its topological expression.

A cluster is composed of any combination of another (inner) cluster, processor core, and memory device. SHIM

has its own way of classifying and naming these objects (Table 1). A processor core is represented as a

MasterComponent object. As can be seen from the table, a MasterComponent can also be some type of accelerator

(e.g., a DMA controller). The objective of MasterComponent is to represent those electrical components that play

the role of master component in the traditional master-slave bus setup, but only if they are relevant to the software

view SHIM defines.

Table 1. SHIM representation of hardware components

SHIM term Hardware term

ComponentSet Cluster of any level (a hardware board itself is also a cluster)

MasterComponent Processor core, accelerator, or other master devices

SlaveComponent Memory

The cluster, or ComponentSet, can be used to express not only a processor core cluster, but also a hardware board.

It can also be extrapolated to represent a system composed of multiple boards – in this case, the outermost cluster

is the system boundary itself.

2.2 Memory - AddressSpaceSet

A software program accesses memory through a logical window called the address space. Processor hardware

usually supports multiple address spaces, for different access privileges, for example. An address space is further

1
 http://en.wikipedia.org/wiki/Topology_(electronics)

http://en.wikipedia.org/wiki/Topology_(electronics)

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 13 of 58

subdivided into multiple subspaces, or address blocks. When a program makes an access somewhere in a memory

device, it performs this by issuing a load or store instruction with its source or destination address falling into any

one of the subspaces. To accommodate this memory setup, SHIM has a group of objects called AddressSpaceSet.

An AddressSpaceSet can contain multiple AddressSpace, and each AddressSpace can contain multiple SubSpace.

A SubSpace is mapped to a physical memory device, or SlaveComponent, residing in some cluster, or

ComponentSet. To describe the binding for which SlaveComponent is mapped to a specific SubSpace, the SHIM

specification uses an object called MasterSlaveBinding. The object describes the mapping between a memory

device and a memory subspace; it also indicates which MasterComponent (e.g., a processor core) has access to the

memory. Since it is possible for multiple MasterComponents to have access to a memory SubSpace, a set object

called MasterSlaveBindingSet is also defined to group multiple MasterSlaveBinding objects.

By exploring the objects under the AddressSpaceSet, a tool can discover what memory spaces are available and

which processor core or accelerator has what kind of access to those. Multiple AdddressSpace/SubSpace may

share the same SlaveComponent. If the sharing occurs for only parts of the physical memory, it can be divided into

multiple SlaveComponents.

2.3 Inter-core communication – CommunicationSet

For software to run on multiple processor cores and accelerators with some degree of cooperative manner, it often

exchanges data, which may be available via a shared memory region. The software must also trigger, synchronize,

or perform mutual exclusion in some way. In cases where shared memory is not available, some form of core-to-

core or MasterComponent to MasterComponent communications is required. To accommodate this situation,

SHIM defines a class of objects called CommunicationSet. All SHIM objects have a child object called

ConnectionSet, which includes one or more Connection that describes the source and destination

MasterComponents for the communication. The variety of ConnectionSet classes have similar communication

mechanisms (Table 2).

Table 2. Inter-core communication classes

CommunicationSet classes Description

SharedRegisterCommunication Shared register based communication. Often such hardware provides a set of

registers that can be accessed by multiple processor cores.

SharedMemoryCommunication Shared memory based communications. An operation type is specified from

TAS (Test and set), LLSC (Load-link/Store conditional), CAX (Compare

and exchange), and OTHER (other unspecified operation).

EventCommunication An event is often a register bitmap based communication – if a processor

core raises an event (Boolean), that is sent to another core and can be seen as

the mapped event signaled in its event register. It may or may not trigger an

interrupt.

FIFOCommunication A FIFO is sometimes used for inter-core communication and often

implemented as FIFO registers, possibly with buffers of varying depth.

InterruptCommunication This is a typical inter-processor-interrupt. This object only has the

ConnectionSet.

Each class has its unique properties or attributes. All classes include connection information describing which

pairs of cores are connected by the particular communication object. Since there can be multiple connections, the

object contains ConnectionSet, which in turn contains any number of Connection. Each Connection contains

references to a pair of MasterComponents.

Software tools can use this information to obtain the type of MasterComponent-to-MasterComponent

communication mechanisms are supported by a particular hardware implementation represented by a SHIM XML.

Note that the connection can be across multiple ComponentSet boundaries, even if it traverses the chip or hardware

board boundaries.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 14 of 58

2.4 Performance

2.4.1 General

As expected, different processor hardware has different performance characteristics. The performance

characteristics can be very complex for a multi-many-core hardware and will have tremendous impact on the

software design. Since SHIM’s principle is to capture the properties that affect the software at the architectural

design level, it is intrinsic to include such performance properties (Table 3).

Table 3. Performance properties in SHIM

Performance Property Related SHIM Object Description

Instruction execution CommonInstructionSet,

Instruction

The execution cycles of processor instructions. The

instruction set is described as LLVM IR, and the

cycles of a particular processor architecture is

expressed in terms of these LLVM IR instructions.

Memory access SubSpace,

MasterSlaveBinding,

Accessor, AccessType

The processor cycles for accessing a memory. Each

processor core can have different cycles for different

access types such as read or write and accessing by

byte, word, double word accesses, etc.

Inter-core

communication

CommunicationSet classes The time needed for a particular connection of two

MasterComponent for a particular Communication

class, such as InterruptCommunication, in processor

cycles.

There are significant performance variations among different processor, memory, and inter-connect architectures,

so all performance properties are expressed as a triplet of best, typical, and worst cycles. Some architectures are

highly deterministic and may have little variation in the performance of some operations; this will be depicted with

the triplet bearing similar, if not the same, values. The software tool can use this information to determine the

hardware dynamism or determinism by examining the deviation in the values. For such hardware, the estimation

based on SHIM XML can be highly accurate, well under the 20% error rate that SHIM targets (even possibly

nearing single digits of error percentage). Some hardware could have fairly dynamic performance characteristics,

performing some operations mostly in two cycles, and possibly in 200 cycles in some cases, for example. This

dynamic behavior often is derived from a wide range of speculative and probabilistic algorithms employed by

modern hardware; this ‘best-effort’ approach as opposed to a ‘guarantee’ approach is quite popular and the trend

continues.

SHIM, as said in Software View - what is in and what is not, provides software with a simpler view of the

underlying hardware and it avoids descriptions of what speculative algorithm is supported and its detailed spec.

The triplet performance representation provides a window to adapt the dynamism by carefully setting up the three

values, encapsulating the various hardware mechanism underneath. After all, it is technically infeasible, if not

impossible, to achieve 100% accuracy in the hardware performance estimation – the idea is to obtain accurate

enough performance estimation for system architectural design – the rest must be optimized in the later phase of

system development. This approach is reasonable since the final set of software is unavailable before the system

development stage and there are many other factors that influence the development, and thus the design, as the

project progresses.

SHIM.xml is created for a specific hardware (and system software if necessary) configuration. If, for example,

quality of service (QoS) is to impact the performance characteristics at a level greater than the goal of 20% error

rate, multiple SHIM XML files must be authored or a Common Configuration File (CCF) must be used to describe

the variation in performance.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 15 of 58

2.4.2 Latency and Pitch

The performance object is characterized by a pair of triplets - one associated with ‘latency’, the other for the

‘pitch’ (Figure 6). The latency, or Latency in terms of SHIM class, is specifically the processor cycles for

performing the particular operation. The Pitch is a trickier process – it is the size of stride when executing the

operation in consecutive manner, also expressed in processor cycles. As indicated previously, modern hardware

has a mechanism to speculate what would be the next software action. When accessing a memory, for example, the

hardware has a cache that reads the memory in its line size, even if a smaller size of memory is requested by a

particular ‘load’ instruction. In essence, it can read the next memory address ahead of time, hoping the next ‘load’

instruction will follow at the consecutive address (called a speculative fetch). If that fetch proves true, the next

read operation can complete by reading from the cache, without actually accessing the slower main memory. The

hardware supports other similar mechanisms – all trying to take advantage of repetitive software behavior. This

action results in the performance characteristics that, if the similar operation is performed repeatedly in some way,

the average execution cycles per operation are less than it would be if it is not. The Pitch is specifically meant to

describe this performance property.

Figure 6. Latency and Pitch represent the primary performance characteristics.

The software tool’s job is to see if a particular operation is repeated, and use the Latency and Pitch triplets

accordingly.

2.4.3 Using triplets

Any factors which influence performance characteristics should be expressed in the triplet of ‘best’, ‘typical’ and

‘worst’ to describe the performance variations. This is described with examples in Table 4. Using Triples).

Please note that, statistically speaking, the ‘typical’ value is not the average but the mode.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 16 of 58

Table 4. Using Triples

In the simple case in which a single number can
describe the specific performance (the triplet has
three equal values), the triplet notation is still
useful to explicitly note that it has the three equal
values.

Example: 10.0, 10.0, 10.0

When the distribution has two numbers, a triplet
permits more precise expression. The ‘typical’
number represents the more frequent conditions.

Example: 5.0, 5.0, 15.0

Gaussian distribution may be observed in an ideal
case, where the ‘typical’ value equals the mean.
The best and worst represent greater than or
equal to three standard deviations away from the
mean.

Example: 5.1, 10.0, 14.9

On the real distribution, the measurement of the
machine performance limit is sometimes very
difficult. In such a case, adopt the 99.9%
cumulative point (almost equal to the three
standard deviation point on Gaussian distribution)
of the distribution as the worst and the 0.1%
cumulative point as the best. The typical value
represents the mode of the distribution.

Example: 6.0, 8.5, 18.9

2.5 Software View - what is in and what is not

As said in Introduction, tools should primarily use SHIM to aid developing software that runs on multi-many-core

hardware. Therefore, the key strategy in defining the SHIM specification is to describe the hardware but only for

the information that is relevant to such tools. We call this a ‘software view’ of hardware, as opposed to ‘hardware

view’, where the focus would be the physical/electrical means of inter-connects between processing cores, the

0 20102 4 6 8 12 14 16 18

0

1

0.2

0.4

0.6

0.8

Cycle

Fr
eq

ue
nc

y

Histogram

0 20102 4 6 8 12 14 16 18

0e00

2e-01

4e-01

6e-01

1e-01

3e-01

5e-01

7e-01

Cycle

Fr
eq

ue
nc

y

Histogram

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 17 of 58

NoC
2
 protocol used to route the memory read request by a particular core, the number of processor pipeline

stages, the cache coherency protocol, etc., unless these features matter greatly to some class of tools that aid

software development.

It is tempting and relatively easy to include additional hardware properties in SHIM, however this will result in a

more complex SHIM XML, requiring more effort to grasp the schema and complicating the effort for tools to use

this information. Furthermore, the most critical issue is the challenge to create a SHIM XML in the first place –

leading to limited adoption of the SHIM standard.

The basic principle is to capture the properties that affect the software at the architectural design level. This is

to say, if a design-aid tool uses SHIM to produce an appropriate software design for a particular hardware

described by an SHIM XML, then the design should not require modification at the software architectural level at

the later stages of system development.

Although the “software architectural design level” is the baseline, it is sometimes difficult to agree on whether a

particular hardware property is important. The rule of thumb is that if we cannot derive an actual (even

imaginable) use case, the SHIM specification excludes it.

For various reasons, a number of potential hardware properties have not been included into the current

specification. One of the primary reasons is that the excluded types of hardware properties are peripheral to

existing properties in the specification. Such hardware properties may be included in a future version of the

specification, but we decided to take an evolutionary approach and stabilize the more basic properties first.

The most basic properties selected for inclusion are the following: topology, address space, inter-core

communication, and performance and configuration.

2.6 XML

The SHIM interface uses extensible markup language (XML); specifically, the SHIM XML uses the XML Schema

(XSD) to define its XML structure. XSD is essentially the same as an UML class diagram. Each SHIM XML file

represents a unique hardware, but all must conform to the SHIM XML schema. The UML class diagram

representation of SHIM XML schema is shown in Figure 3.

The XML schema allows the definition of the SHIM XML structure, but with the help of a validating parser that

reads XML files, the schema also allows validation of SHIM XML. Validating parsers are readily available, both

openly and commercially, often bundled with various XML related libraries in many different programming

languages.

Therefore, technically speaking, the SHIM XML schema, or the shim.xsd, is the core interface definition of SHIM.

2.6.1 Data Binding

A common technique to read XML files is via SAX or DOM libraries. Using XSD, it is possible to generate class

libraries in many choices of programming languages by running a schema compiler against the shim.xsd. The

generated library includes all the SHIM XML classes of the chosen programming language, with automatically

added methods or functions to get and set the data. This allows tools to access hardware properties expressed in a

SHIM XML similar to accessing normal objects in their programming languages.

2.6.2 Who Creates SHIM XML

The hardware provider is expected to create and provide the SHIM XML, which will then be used by the software

tools. On the other hand, a hardware provider may not provide the SHIM XML. If SHIM XML can only be

authored by the hardware provider, it can be a significant roadblock in the hardware’s adoption. Therefore,

Reference authoring tools are made freely available along with the specification. If a user has access to the basic

2
 Network on Chip

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 18 of 58

technical reference manuals, and either simulator or actual hardware (e.g., evaluation board), the Reference

authoring tools allows for the creation of the SHIM XML for most multi-many-core hardware in fewer than 1-2

days.

2.7 Configuration

2.7.1 General

There are two different aspects of configuration in SHIM that are needed by software tools. One aspect is the

configuration of software tools based on the basic hardware properties (e.g., cluster organization, number of cores,

memory size, processor ISA). These are static hardware properties and tools are able to read the SHIM XML file

and configure themselves accordingly. The other aspect is configuring the hardware dynamic properties (e.g.,

clock frequency, various modes and setting for transfer accelerator) that can be modified according to the system

design. For dynamic properties, the tools’ user is often required to input the configuration, thus the tools must

provide a user interface (either command line or graphical). SHIM provides a mechanism called Common

Configuration File (CCF), to serve both for describing the configurable properties and also simultaneously

defining the user interface.

Changing the configuration often affects the performance properties. The CCF is designed so that it can also

describe how the selection or input value of particular configurable items affects the performance properties.

2.7.2 Common Configuration File (CCF)

The CCF extends SHIM to describe configurable hardware elements and also defines a standard way to generate

configuration UI by the tools that support it. The CCF describes the configurable items in a file called CCF XML;

this is a separate XML file from the SHIM XML. Software tools using SHIM can utilize this mechanism to

provide a Configuration tool user interface within its tool, or as a separate standalone tool. When the configuration

tool is executed, along with the SHIM XML and CCF, it provides a mechanism to modify the specific parts of

SHIM XML, according to the inputs made by the tool user, which can also be automated by the tool.

The SHIM XML and CCF are inter-linked via XPath, the XML Path Language (a query language for selecting

nodes from an XML document). In addition, XPath may be used to compute values (e.g., strings, numbers, or

Boolean values) from the content of an XML document.

Here is an example of an actual CCF:

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 19 of 58

 Figure 7. CCF example

This CCF, when opened by a CCF capable tool, will dynamically create a GUI like below (this is a CCF sample

application available with source codes from MCA).

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 20 of 58

Figure 8. GUI generated by CCF

Please refer to Common Configuration File (CCF).

2.8 Reference Authoring Tools

In addition to the specification itself, SHIM also provides a free set of reference authoring tools. As a reference,

anyone can provide their own version of the SHIM authoring tools. The Multicore Association provides the

reference authoring tool, SHIM Editor, for the following reasons:

1. Easy authoring of SHIM XML to enable better adoption

2. Serves as a sample SHIM application with source code

2.9 Roadmap

The first version of SHIM contains the fundamental and critical hardware properties that many tools will find

useful. However, as mentioned in Software view - what is in and what is not, some items have not been covered in

this first version. SHIM is an open technology and wider adoption will fuel its innovative use; this may require

enhancements to the specification and we would like to remain open to such changes.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 21 of 58

Properties that are under consideration for future versions of the spec include: debug/trace, power consumption,

and basic peripheral components. A few other items are worth mentioning such as componentization of SHIM

XML, hardware-related software properties, and schema refinement for smaller XML.

2.9.1 Componentization of SHIM XML

The current version of SHIM must stand alone, meaning that a SHIM XML file should describe an executable

hardware platform (e.g., a virtual simulator or an actual hardware board). However, a dedicated multi-many-core

chip is rarely designed for each board, therefore, the same chip is often deployed in multiple boards. This means

that separate SHIM XML files must exist for each board, though the SHIM XML description of the multi-many-

core chip description is redundant for these two files.

Once SHIM’s use starts to spread, it is natural to reuse a particular component description in a SHIM XML file

among multiple SHIM XML files. This is essentially componentization of SHIM XML, a feature already under

consideration for inclusion in the next major version of SHIM. Meanwhile, one can use an existing SHIM XML

file resembling your target hardware as a basis of authoring a new SHIM XML file. SHIM Editor indeed supports

editing of an existing SHIM XML file.

A challenge of componentizing SHIM XML is that a SHIM XML class, such as MasterComponent, contains

properties that are static for the hardware board design it is being included with, and also properties that may differ

depending on how it is integrated into a particular hardware board. The two must be decoupled in order to reuse

the SHIM XML description of the MasterComponent. One idea is to use Common Configuration File (CCF),

which allows for adjusting the performance value based on some other information, as long as it can be found in

the final SHIM XML file or somewhere within the CCF.

Also along with the componentization of SHIM XML itself, we are investigating the possibility to align SHIM

with IP-XACT where appropriate, to ease SHIM XML authoring tools ability to support importing IP-XACT

XML files to semi-automate authoring a SHIM XML using the relevant information contained in IP-XACT. The

objects contained in the ComponentSet, at least the topology part and the object names, should be importable,

while others are unique to SHIM XML and must be added.

2.9.2 Hardware-Related Software Properties

In addition to the hardware properties that SHIM describes, some tools have a dependency on the system software

properties such as the operating system and even some middleware. For example, for a parallelization design aid

tool such as a parallelizing compiler, the performance of OS mutual exclusion primitives is critical in deciding on

an appropriate lock mechanism for particular processing. Similarly, the tool may need to know the performance of

some message passing mechanism. Currently, this kind of information is not included in SHIM, partly because it

will require separate SHIM XML files for different system software implementations, along with the library

interface definition; a future version of SHIM may extend its coverage into this kind of information.

2.9.3 Schema Refinement for Smaller XML

The SHIM schema is intended to be simple, while allowing it to support both homogeneous and heterogeneous

hardware. This has led to using repetitive sets of lines in the XML for homogenous hardware that have multiple

instances of the same component, like a hardware composed of multiple instances of the same cluster

configuration. If the clusters are heterogeneous, with each cluster having a different configuration of processing

cores, then the number of XML lines does not change but they will have different lines. If SHIM can provide a

mechanism to express the redundancy in the schema, the size of SHIM XML file for homogenous hardware can be

reduced. We intend to consider this along with Componentization of SHIM XML.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 22 of 58

3. SHIM Interface

The major part of the SHIM interface is the SHIM XML schema itself. Therefore, understanding the schema

comprises the major part of understanding the interface. The basics are described in the chapter SHIM Concepts

and it assumes the schema is divided into the following groups:

 Enumeration

 SystemConfiguration

 ComponentSet

 AddressSpaceSet

 CommunicationSet

For each group above, the schema and the description are explained in the following sections. For each object or

XML element contained in each group, the description and example XML are provided.

The schema is converted into different programming language bindings, using various schema compilers. The

SHIM specification does not specify the programming language as this can vary according to the nature of the

tools and intended use cases. However, Java is assumed to be one of the primary languages used and the Java class

library interface of SHIM, called the SHIM API library, is also provided. Some utility interfaces are defined along

with the reference implementation in Java to further ease the programming using of the SHIM class libraries.

The following sections describe each part, detailing the XML elements and their attributes, along with a pointer to

the Java class library interface.

3.1 shim.xsd

The SHIM XML schema file. Please refer to the following sections for description of elements.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 23 of 58

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="ComponentSet" type="ComponentSet"/>

 <xs:complexType name="ComponentSet">

 <xs:sequence>

 <xs:element name="ComponentSet" type="ComponentSet" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="SlaveComponent" type="SlaveComponent" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="MasterComponent" type="MasterComponent" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="Cache" type="Cache" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 </xs:complexType>

 <xs:element name="SlaveComponent" type="SlaveComponent"/>

 <xs:complexType name="SlaveComponent">

 <xs:annotation>

 <xs:documentation>Memory</xs:documentation>

 </xs:annotation>

 <xs:sequence/>

 <xs:attribute name="name" use="required" type="xs:string"/>

 <xs:attribute name="id" use="required" type="xs:ID"/>

 <xs:attribute name="size" use="required" type="xs:int"/>

 <xs:attribute name="sizeUnit" use="required" type="SizeUnitType"/>

 <xs:attribute name="rwType" use="required" type="RWType"/>

 </xs:complexType>

 <xs:element name="MasterComponent" type="MasterComponent"/>

 <xs:complexType name="MasterComponent">

 <xs:sequence>

 <xs:element name="CommonInstructionSet" type="CommonInstructionSet" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="Cache" type="Cache" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="ClockFrequency" type="ClockFrequency" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="AccessTypeSet" type="AccessTypeSet" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 <xs:attribute name="id" use="required" type="xs:ID"/>

 <xs:attribute name="masterType" use="required" type="MasterType"/>

 <xs:attribute name="arch" use="required" type="xs:string"/>

 <xs:attribute name="archOption" use="optional" type="xs:string"/>

 <xs:attribute name="pid" use="optional" type="xs:string"/>

 <xs:attribute name="nThread" use="optional" type="xs:int"/>

 <xs:attribute name="endian" use="optional" type="EndianType"/>

 </xs:complexType>

 <xs:simpleType name="RWType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="RW"/>

 <xs:enumeration value="WX"/>

 <xs:enumeration value="RX"/>

 <xs:enumeration value="R"/>

 <xs:enumeration value="W"/>

 <xs:enumeration value="X"/>

 <xs:enumeration value="RWX"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="AddressSpaceSet" type="AddressSpaceSet"/>

 <xs:complexType name="AddressSpaceSet">

 <xs:sequence>

 <xs:element name="AddressSpace" type="AddressSpace" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="AddressSpace" type="AddressSpace"/>

 <xs:complexType name="AddressSpace">

 <xs:sequence>

 <xs:element name="SubSpace" type="SubSpace" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 <xs:attribute name="id" use="required" type="xs:ID"/>

 </xs:complexType>

 <xs:element name="SubSpace" type="SubSpace"/>

 <xs:complexType name="SubSpace">

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 24 of 58

 <xs:sequence>

 <xs:element name="MemoryConsistencyModel" type="MemoryConsistencyModel"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="MasterSlaveBindingSet" type="MasterSlaveBindingSet"

minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 <xs:attribute name="id" use="required" type="xs:ID"/>

 <xs:attribute name="start" use="required" type="xs:long"/>

 <xs:attribute name="end" use="required" type="xs:long"/>

 <xs:attribute name="endian" use="optional" type="EndianType"/>

 </xs:complexType>

 <xs:simpleType name="MasterType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="PU">

 <xs:annotation>

 <xs:documentation>Processing Unit</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="TU">

 <xs:annotation>

 <xs:documentation>Transffer Unit</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="OTHER"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Instruction" type="Instruction"/>

 <xs:complexType name="Instruction">

 <xs:sequence>

 <xs:element name="Performance" type="Performance" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 </xs:complexType>

 <xs:element name="InterruptCommunication" type="InterruptCommunication"/>

 <xs:complexType name="InterruptCommunication">

 <xs:complexContent>

 <xs:extension base="AbstractCommunication">

 <xs:sequence/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="Latency" type="Latency"/>

 <xs:complexType name="Latency">

 <xs:complexContent>

 <xs:extension base="AbstractPerformance">

 <xs:sequence/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="AbstractPerformance" type="AbstractPerformance"/>

 <xs:complexType name="AbstractPerformance" abstract="true">

 <xs:sequence/>

 <xs:attribute name="best" use="optional" type="xs:float"/>

 <xs:attribute name="typical" use="required" type="xs:float"/>

 <xs:attribute name="worst" use="optional" type="xs:float"/>

 </xs:complexType>

 <xs:element name="Pitch" type="Pitch"/>

 <xs:complexType name="Pitch">

 <xs:complexContent>

 <xs:extension base="AbstractPerformance">

 <xs:sequence/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="MasterSlaveBinding" type="MasterSlaveBinding"/>

 <xs:complexType name="MasterSlaveBinding">

 <xs:sequence>

 <xs:element name="Accessor" type="Accessor" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="slaveComponentRef" use="required" type="xs:IDREF"/>

 </xs:complexType>

 <xs:element name="CommunicationSet" type="CommunicationSet"/>

 <xs:complexType name="CommunicationSet">

 <xs:sequence>

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 25 of 58

 <xs:element name="SharedRegisterCommunication" type="SharedRegisterCommunication"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="SharedMemoryCommunication" type="SharedMemoryCommunication"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="EventCommunication" type="EventCommunication" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="FIFOCommunication" type="FIFOCommunication" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="InterruptCommunication" type="InterruptCommunication"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="AbstractCommunication" type="AbstractCommunication"/>

 <xs:complexType name="AbstractCommunication" abstract="true">

 <xs:sequence>

 <xs:element name="ConnectionSet" type="ConnectionSet" minOccurs="0"

maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 </xs:complexType>

 <xs:element name="Connection" type="Connection"/>

 <xs:complexType name="Connection">

 <xs:sequence>

 <xs:element name="Performance" type="Performance" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="from" use="required" type="xs:IDREF">

 <xs:annotation>

 <xs:documentation>Reference to the instance of

MasterComponent</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="to" use="required" type="xs:IDREF">

 <xs:annotation>

 <xs:documentation>Reference to the instance of

MasterComponent</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="PerformanceSet" type="PerformanceSet"/>

 <xs:complexType name="PerformanceSet">

 <xs:sequence>

 <xs:element name="Performance" type="Performance" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="FIFOCommunication" type="FIFOCommunication"/>

 <xs:complexType name="FIFOCommunication">

 <xs:complexContent>

 <xs:extension base="AbstractCommunication">

 <xs:sequence/>

 <xs:attribute name="dataSize" use="required" type="xs:int"/>

 <xs:attribute name="dataSizeUnit" use="optional" type="SizeUnitType"/>

 <xs:attribute name="queueSize" use="required" type="xs:int"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="CommonInstructionSet" type="CommonInstructionSet"/>

 <xs:complexType name="CommonInstructionSet">

 <xs:sequence>

 <xs:element name="Instruction" type="Instruction" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 </xs:complexType>

 <xs:element name="Cache" type="Cache"/>

 <xs:complexType name="Cache">

 <xs:sequence>

 <xs:element name="cacheRef" type="xs:IDREF" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 <xs:attribute name="id" use="required" type="xs:ID"/>

 <xs:attribute name="cacheType" use="required" type="CacheType">

 <xs:annotation>

 <xs:documentation>soft / hard</xs:documentation>

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 26 of 58

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="cacheCoherency" use="required" type="CacheCoherencyType"/>

 <xs:attribute name="size" use="required" type="xs:int"/>

 <xs:attribute name="sizeUnit" use="required" type="SizeUnitType"/>

 <xs:attribute name="nWay" use="optional" type="xs:int"/>

 <xs:attribute name="lineSize" use="optional" type="xs:int"/>

 <xs:attribute name="lockDownType" use="optional" type="LockDownType"/>

 </xs:complexType>

 <xs:element name="SystemConfiguration" type="SystemConfiguration"/>

 <xs:complexType name="SystemConfiguration">

 <xs:sequence>

 <xs:element name="ComponentSet" type="ComponentSet" minOccurs="1" maxOccurs="1"/>

 <xs:element name="CommunicationSet" type="CommunicationSet" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="AddressSpaceSet" type="AddressSpaceSet" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="ClockFrequency" type="ClockFrequency" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 <xs:attribute name="shimVersion" use="required" type="xs:string"/>

 </xs:complexType>

 <xs:element name="ConnectionSet" type="ConnectionSet"/>

 <xs:complexType name="ConnectionSet">

 <xs:sequence>

 <xs:element name="Connection" type="Connection" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="CacheCoherencyType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="SOFT"/>

 <xs:enumeration value="HARD"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="MemoryConsistencyModel" type="MemoryConsistencyModel"/>

 <xs:complexType name="MemoryConsistencyModel">

 <xs:sequence/>

 <xs:attribute name="rawOrdering" use="optional" type="OrderingType">

 <xs:annotation>

 <xs:documentation>Read After Write</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="warOrdering" use="optional" type="OrderingType">

 <xs:annotation>

 <xs:documentation>Write After Read</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="wawOrdering" use="optional" type="OrderingType">

 <xs:annotation>

 <xs:documentation>Write After Write</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="rarOrdering" use="optional" type="OrderingType"/>

 </xs:complexType>

 <xs:simpleType name="OrderingType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ORDERD"/>

 <xs:enumeration value="UNORDERD"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="EndianType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="LITTLE"/>

 <xs:enumeration value="BIG"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="SharedRegisterCommunication" type="SharedRegisterCommunication"/>

 <xs:complexType name="SharedRegisterCommunication">

 <xs:complexContent>

 <xs:extension base="AbstractCommunication">

 <xs:sequence/>

 <xs:attribute name="dataSize" use="required" type="xs:int"/>

 <xs:attribute name="dataSizeUnit" use="required" type="SizeUnitType"/>

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 27 of 58

 <xs:attribute name="nRegister" use="required" type="xs:int"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="SharedMemoryCommunication" type="SharedMemoryCommunication"/>

 <xs:complexType name="SharedMemoryCommunication">

 <xs:complexContent>

 <xs:extension base="AbstractCommunication">

 <xs:sequence/>

 <xs:attribute name="operationType" use="optional" type="OperationType"/>

 <xs:attribute name="dataSize" use="optional" type="xs:int"/>

 <xs:attribute name="dataSizeUnit" use="optional" type="SizeUnitType"/>

 <xs:attribute name="addressSpaceRef" use="optional" type="xs:IDREF"/>

 <xs:attribute name="subSpaceRef" use="optional" type="xs:IDREF"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="EventCommunication" type="EventCommunication"/>

 <xs:complexType name="EventCommunication">

 <xs:complexContent>

 <xs:extension base="AbstractCommunication">

 <xs:sequence/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="ClockFrequency" type="ClockFrequency"/>

 <xs:complexType name="ClockFrequency">

 <xs:sequence minOccurs="1"/>

 <xs:attribute name="clockValue" use="required" type="xs:float"/>

 </xs:complexType>

 <xs:element name="Accessor" type="Accessor"/>

 <xs:complexType name="Accessor">

 <xs:sequence>

 <xs:element name="PerformanceSet" type="PerformanceSet" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="masterComponentRef" use="required" type="xs:IDREF"/>

 </xs:complexType>

 <xs:element name="AccessType" type="AccessType"/>

 <xs:complexType name="AccessType">

 <xs:sequence minOccurs="1"/>

 <xs:attribute name="name" use="required" type="xs:string"/>

 <xs:attribute name="id" use="required" type="xs:ID"/>

 <xs:attribute name="rwType" use="optional" type="RWType"/>

 <xs:attribute name="accessByteSize" use="optional" type="xs:int"/>

 <xs:attribute name="alignmentByteSize" use="optional" type="xs:int"/>

 <xs:attribute name="nBurst" use="optional" type="xs:int"/>

 </xs:complexType>

 <xs:element name="MasterSlaveBindingSet" type="MasterSlaveBindingSet"/>

 <xs:complexType name="MasterSlaveBindingSet">

 <xs:sequence>

 <xs:element name="MasterSlaveBinding" type="MasterSlaveBinding" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="CacheType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="DATA"/>

 <xs:enumeration value="INSTRUCTION"/>

 <xs:enumeration value="UNIFIED"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Performance" type="Performance"/>

 <xs:complexType name="Performance">

 <xs:sequence>

 <xs:element name="Pitch" type="Pitch" minOccurs="1" maxOccurs="1"/>

 <xs:element name="Latency" type="Latency" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="accessTypeRef" use="optional" type="xs:IDREF"/>

 </xs:complexType>

 <xs:element name="AccessTypeSet" type="AccessTypeSet"/>

 <xs:complexType name="AccessTypeSet">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="AccessType" type="AccessType" minOccurs="1"

maxOccurs="unbounded"/>

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 28 of 58

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="SizeUnitType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="KiB"/>

 <xs:enumeration value="B"/>

 <xs:enumeration value="GiB"/>

 <xs:enumeration value="MiB"/>

 <xs:enumeration value="TiB"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="LockDownType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="LINE"/>

 <xs:enumeration value="NONE"/>

 <xs:enumeration value="WAY"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="OperationType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="TAS">

 <xs:annotation>

 <xs:documentation>Test and Set</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="LLSC">

 <xs:annotation>

 <xs:documentation>Load Link/Store Conditional</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="CAX">

 <xs:annotation>

 <xs:documentation>Compare and Exchange</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="OTHER"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

3.2 Conventions

• The interface is grouped into Enumeration, SystemConfiguration, ComponentSet, AddressSpaceSet, and

CommunicationSet. Each group has SCHEMA and DESCRIPTION.

• Each group describes its objects in separate subsections. These have DESCRIPTION and EXAMPLE.

• The objects and attributes use bold style, and the types use italic.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 29 of 58

3.3 Enumeration

SCHEMA

DESCRIPTION

Enumeration is a special group which defines various constants used in some of the SHIM object attributes. The

objects use the constants as values for selected attributes. When the attributes take one enumeration as its value, its

attribute types specify which enumeration type it uses.

The following enumeration types are defined:

• MasterType specifies a type of MasterComponent. The values can be one of PU (Processor Unit, such as

CPU), TU (Transfer Unit, such as DMA), or OTHER.

• EndianType specifies the endian, or byte-order.

• LockDownType specifies the type of supported cache content lockdown operation. The values can be one of

LINE for line-lockdown, WAY for way-lockdown, and NONE if the lockdown is not supported.

• CacheCoherencyType specifies the type of cache coherency mechanism supported. It can be either HARD

for hardware-based coherency or SOFT for software-based coherency.

• OrderingType specifies the memory consistency model. It can be ORDERED for ordered memory

consistency or UNORDERED for unordered memory consistency.

• RWType specifies memory access types, which can be R for read, W for write, X for execute, RW for both R

and W, RWX for all of R, W and X, WX for both W and X, and RX for both R and X.

• CacheType specifies the type of cache, which can be DATA for data cache, INSTRUCTION for instruction

cache, and UNIFIED for a unified cache.

• SizeUnitType specifies the unit for data size, which can be B for byte, KiB for kilo binary byte, MiB for

mega binary byte, GiB for giga binary byte, and TiB for tera binary byte.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 30 of 58

• OperationType specifies the type of shared memory communication, which can be TAS for Test and Set,

LLSC for Load-link/Store Conditional, CAX for Compare and Exchange, and OTHER for other unspecified

operation.

EXAMPLE

See examples for objects that use these types in the following sections.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 31 of 58

3.4 SystemConfiguration

SCHEMA

DESCRIPTION

The SystemConfiguration is a root object. All SHIM XML has this object as its root.

• SystemConfiguration (mandatory): the root object; it has name of type string. It has one ComponentSet,

ClockFrequency, and zero or more AddressSpaceSet and CommunicationSet.

• name (mandatory; type: string): the name of this SHIM description.

• shim Version (mandatory; type: string): the version SHIM interface specification. For this version of SHIM

interface, it is “1.0”. It may be trailed with minor revision numbers (e.g., “1.0.1”).

• Refer to ComponentSet, AddressSpaceSet and CommunicationSet.

EXAMPLE

<SystemConfiguration name="System" shimVersion="1.0">

 <ComponentSet name="Cluster_0">

 </ComponentSet>

 <CommunicationSet>

 </CommunicationSet>

 <AddressSpaceSet>

 </AddressSpaceSet>

 <ClockFrequency clockValue="1.0E8"/>

</SystemConfiguration>

3.4.1 ClockFrequency

DESCRIPTION

ClockFrequency: the system clock frequency with the following objects and/or attributes.

• clockValue (mandatory; type float): the clock frequency value in Hz.

• EXAMPLE

See SystemConfiguration.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 32 of 58

3.5 ComponentSet

SCHEMA

DESCRIPTION

ComponentSet is the root of the hardware component topology description that SHIM contains. It has a name

(mandatory) attribute. It may have MasterComponent, Cache, SlaveComponent, and another ComponentSet.

3.5.1 MasterComponent

DESCRIPTION

MasterComponent is a processor core, accelerator (including DMA accelerator), or any other type of component

that can be a master. It has the following objects and/or attributes.

• AccessTypeSet (mandatory): refer to AccessTypeSet.

• CommonInstructionSet (optional): refer to CommonInstructionSet.

• name (mandatory; type string): the name of this object. It should follow the same text used in the hardware

reference manual.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 33 of 58

• id (mandatory; type ID): the ID of this object.

• masterType (mandatory): the type of master and MasterType

• arch (mandatory; type string): specifies the name of this component’s architecture and is intended mostly for

describing processor instruction architecture. It is advised to use the official identifier for the ISA generally

found in the architecture reference manual or similar.

• archOption (optional): specifies additional architecture properties.

• pid (optional): the ID of this MasterComponent. It is intended to be used for processor core id when the

processor has some way of identifying the processor core when there are multiple cores. The scheme for

describing the processor ID can be different, and it should follow the semantics used in the architecture

reference manual of the processor. Since ID may not be expressed by an integer or single integer, this

attribute is of type string.

• nChannel (optional; type int): specifies the number of channels and is intended for describing a number of

channels of DMA, when masterType is TU.

• nThread (optional; type int): specifies the number of hardware thread, and intended for a processor core that

supports hardware-threading.

• translation (optional; type string): specifies if address translation is supported. It is intended for describing

when a processor supports some address translation unit such as MMU.

• protection (optional; type string): specifies the supported types of protection and is intended for describing

the protection type supported by the processor.

• endian (optional; type EndianType): the endianness of this object.

EXAMPLE

<MasterComponent name="Core_0_0_0" id="SHIMEDITOR25331849408820141005130142974" masterType="PU"

arch="Generic" archOption="" pid="16" nChannel="16" nThread="1" endian="LITTLE">

 <CommonInstructionSet name="LLVM Instructions">

 <Instruction name="ret">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Instruction>

 ...

 </CommonInstructionSet>

 <Cache name="UnifiedCache_0_0_0" id="SHIMEDITOR8622411901820141005130145548"

cacheType="UNIFIED" cacheCoherency="SOFT" size="64" sizeUnit="KiB" nWay="16" lineSize="128"

lockDownType="LINE"/>

 <ClockFrequency clockValue="0.0"/>

 <AccessTypeSet>

 <AccessType name="AT_0_0_0_0" id="SHIMEDITOR27237422393120141005130145551" rwType="R"

accessByteSize="4" alignmentByteSize="4" nBurst="8"/>

 ...

 </AccessTypeSet>

</MasterComponent>

3.5.2 SlaveComponent

DESCRIPTION

SlaveComponent is for describing a slave device such as memory. It has the following objects and/or attributes:

• name (mandatory; type string): the name of this object.

• id (mandatory; type ID): the ID of this object.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 34 of 58

• size (mandatory; type int): the size of this memory.

• sizeUnit (mandatory; type SizeUnitType): the unit of size.

• rwType (mandatory; type RWType): specifies this memory is readable and/or writable.

EXAMPLE

<SlaveComponent name="Memory_0_0_0" id="SHIMEDITOR8181774865020141005130142975" size="128"

sizeUnit="KiB" rwType="RW"/>

3.5.3 Cache

DESCRIPTION

This object describes a cache with the following objects and/or attributes:

• cacheRef (optional; type IDREF): specifies the id of another Cache that is one level away from

MasterComponent.

• name (mandatory; type string): the name of this object.

• id (mandatory; type ID): the ID of this object.

• cacheType (mandatory; type CacheType): specifies this cache type.

• cacheCoherency (mandatory; type CacheCoherencyType): specifies what cache coherency mechanism is

provided.

• size (mandatory; type int): this cache size.

• sizeUnit (mandatory; type SizeUnitType): the unit of size.

• nWay (optional; type int): specifies the number of cache ways.

• lineSize (optional; type int): specifies the cache line size.

• lockDownType (optional; type LockDownType): specifies the supported cache lock down operation.

EXAMPLE

 <Cache name="UnifiedCache_0_0_0" id="SHIMEDITOR8622411901820141005130145548"

cacheType="UNIFIED" cacheCoherency="SOFT" size="64" sizeUnit="KiB" nWay="16" lineSize="128"

lockDownType="LINE"/>

3.5.4 AccessTypeSet

DESCRIPTION

This object bundles one or more AccessType. It has the following objects and/or attributes:

• AccessType (mandatory): refer to AccessType.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 35 of 58

EXAMPLE

 <AccessTypeSet>

 <AccessType name="AT_0_0_0_0" id="SHIMEDITOR27237422393120141005130145551" rwType="R"

accessByteSize="4" alignmentByteSize="4" nBurst="8"/>

 <AccessType name="AT_0_0_0_1" id="SHIMEDITOR29805129821320141005130145552" rwType="R"

accessByteSize="8" alignmentByteSize="8" nBurst="8"/>

 </AccessTypeSet>

3.5.5 AccessType

DESCRIPTION

This object describes the type of access, mostly intended for, but not limited to, memory access by a processor. It

has the following objects and/or attributes.

• name (mandatory; type string): the name of this object.

• id (mandatory; type ID): the ID of this object.

• rwType (optional; type RWType): specifies the type of access.

• accessByteSize (optional; type int): specifies the data size of access in bytes.

• alignmentByteSize (optional; type int) specifies the alignment requirement in byte of this access.

• nBurst (optional; type int): specifies the burst length. The burst size is accessByteSize. It is mostly intended

for masterType=TU.

EXAMPLE

See AccessTypeSet.

3.5.6 CommonInstructionSet

DESCRIPTION

This object contains Instruction, which describes the instruction supported by the MasterComponent. It is not

explicitly described by the XML schema, however, it must always have LLVM instruction set
3
 and this can be

extended if necessary. Each instruction of the LLVM instruction set corresponds to an instruction or a sequence of

instructions of the MasterComponent. It has the following objects and/or attributes:

• Instruction (mandatory): refer to Instruction.

• name (mandatory; type string): the name of this object.

3
 http://llvm.org/docs/LangRef.html#instruction-reference

http://llvm.org/docs/LangRef.html#instruction-reference

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 36 of 58

EXAMPLE

1. <CommonInstructionSet name="LLVM Instructions">

 <Instruction name="ret">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Instruction>

 <Instruction name="br">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Instruction>

 ...

 <Instruction name="landingpad">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Instruction>

</CommonInstructionSet>

3.5.7 Instruction

DESCRIPTION

This describes the instruction. It has following objects and/or attributes:

• Performance (mandatory): refer to Performance.

• name (mandatory; type string): the name of this object.

EXAMPLE

See CommonInstructionSet.

3.5.8 Performance

DESCRIPTION

This object describes performance. It has the following objects and/or attributes:

• Latency (mandatory): refer to Latency.

• Pitch (mandatory): refer to Pitch.

• accessTypeRef (optional; type IDREF) a reference to AccessType id. This is intended to be used when

describing the performance of memory access.

EXAMPLE

See CommonInstructionSet.

3.5.9 Latency

DESCRIPTION

It has the following objects and/or attributes. Refer to Latency and Pitch.

• best (optional; type float): the number of processor cycles for the best-case latency.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 37 of 58

• typical (mandatory; type float): the number of processor cycles for the typical latency.

• worst (optional; type float): the number of processor cycles for the worst-case latency.

EXAMPLE

See CommonInstructionSet.

3.5.10 Pitch

DESCRIPTION

It has following objects and/or attributes:

• best (optional; type float): the number of processor cycles for the best-case pitch.

• typical (mandatory; type float): the number of processor cycles for the typical pitch.

• worst (optional; type float): the number of processor cycles for the worst-case pitch.

EXAMPLE

See CommonInstructionSet.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 38 of 58

3.6 AddressSpaceSet

SCHEMA

DESCRIPTION

AddressSpaceSet describes how the memory address spaces are organized and which MasterComponent is bound

to which SlaveComponent.

3.6.1 AddressSpace

DESCRIPTION

It has following objects and/or attributes:

• SubSpace (optional): refer to SubSpace.

• name (mandatory; type string): the name of this object.

• id (mandatory; type ID): the ID of this object.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 39 of 58

EXAMPLE

<AddressSpaceSet>

 <AddressSpace name="AS_0_0" id="SHIMEDITOR22375265206920141005130143354">

 <SubSpace name="SS_0_0_0" id="SHIMEDITOR9140938132320141005130143355" start="0" end="128"

endian="LITTLE">

 <MemoryConsistencyModel rawOrdering="ORDERD" warOrdering="ORDERD" wawOrdering="ORDERD"

rarOrdering="ORDERD"/>

 <MasterSlaveBindingSet>

 <MasterSlaveBinding slaveComponentRef="SHIMEDITOR8181774865020141005130142975">

 <Accessor masterComponentRef="SHIMEDITOR25331849408820141005130142974">

 <PerformanceSet>

 <Performance accessTypeRef="SHIMEDITOR27237422393120141005130145551">

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 <Performance accessTypeRef="SHIMEDITOR29805129821320141005130145552">

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Accessor>

 ...

 </MasterSlaveBinding>

 ...

</MasterSlaveBindingSet>

 </SubSpace>

 ...

 </AddressSpace>

...

<AddressSpaceSet>

3.6.2 SubSpace

DESCRIPTION

This object describes a segment in AddressSpace. It has the following objects and/or attributes:

• MasterSlaveBindingSet (mandatory): refer to MasterSlaveBindingSet.

• MemoryConsistencyModel (optional): refer to MemoryConsistencyModel.

• name (mandatory; type string): the name of this object.

• id (mandatory; type ID): the ID of this object.

• start (mandatory; type long): the start address.

• end (mandatory; type long): the end address.

• endian (optional; type EndianType): the endianness of this object.

EXAMPLE

See AddressSpace.

3.6.3 MemoryConsistencyModel

DESCRIPTION

It has the following objects and/or attributes:

• rawOrdering (optional; type OrderingType): specifies the memory ordering of read-after-write access.

• warOrdering (optional; type OrderingType): specifies the memory ordering of write-after-read access.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 40 of 58

• wawOrdering (optional; type OrderingType) specifies the memory ordering of write-after-write access.

• rarOrdering (optional; type OrderingType): specifies the memory ordering of read-after-read access.

EXAMPLE

See AddressSpace.

3.6.4 MasterSlaveBindingSet

DESCRIPTION

It has the following objects and/or attributes:

• MasterSlaveBinding (mandatory): refer to MasterSlaveBinding.

EXAMPLE

See AddressSpace.

3.6.5 MasterSlaveBinding

DESCRIPTION

This object binds a MasterComponent to a SlaveComponent. It has the following objects and/or attributes:

• Accessor (mandatory): refer to Accessor.

• slaveComponentRef (mandatory; type IDREF): specifies the id of SlaveComponent.

EXAMPLE

See AddressSpace.

3.6.6 Accessor

DESCRIPTION

It has the following objects and/or attributes:

• PerformanceSet (optional): refer to PerformanceSet.

• masterComponentRef (mandatory; type IDREF) specifies the id of MasterComponent.

EXAMPLE

See AddressSpace.

3.6.7 PerformanceSet

DESCRIPTION

This groups one or more Performance. It has the following objects and/or attributes:

• Performance (optional): refer to Performance.

EXAMPLE

See AddressSpace.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 41 of 58

3.7 CommunicationSet

SCHEMA

DESCRIPTION

CommunicationSet describes the available MasterComponent-to-MasterComponent communication. There are six

objects that describe different types of communication.

3.7.1 FIFOCommunication

DESCRIPTION

This object describes FIFO-based communication. It has the following objects and/or attributes:

• ConnectionSet (mandatory): refer to ConnectionSet.

• name (mandatory; type string): the name of this object.

• dataSize (mandatory; type int): the data size of this FIFO.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 42 of 58

• dataSizeUnit (mandatory; type SizeUnitType): the unit of dataSize of this FIFO.

• queueSize (mandatory; type int): the queue size (multiples of dataSize in dataSizeUnit, so that the total

capacity is a product of dataSize * dataSizeUnit * queueSize) of this FIFO.

EXAMPLE

<FIFOCommunication dataSize="64" dataSizeUnit="KiB" queueSize="32" name="fifo_00">

 <ConnectionSet>

 <Connection from="SHIMEDITOR25331849408820141005130142974"

to="SHIMEDITOR31113490118120141005130142974">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Connection>

 ...

 </ConnectionSet>

</FIFOCommunication>

3.7.2 SharedRegisterCommunication

DESCRIPTION

This object describes a shared-register based communication. It has the following objects and/or attributes:

• ConnectionSet (mandatory): refer to ConnectionSet.

• name (mandatory; type string): the name of this object.

• dataSize (mandatory; type int): the data size of one shared register.

• dataSizeUnit (mandatory; type SizeUnitType): the unit of dataSize of this shared register.

• nRegister (mandatory; type int): the number of shared registers.

EXAMPLE

<SharedRegisterCommunication dataSize="32" dataSizeUnit="KiB" nRegister="32" name="sreg_00">

 <ConnectionSet>

 <Connection from="SHIMEDITOR25331849408820141005130142974"

to="SHIMEDITOR31113490118120141005130142974">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Connection>

 ...

 </ConnectionSet>

</SharedRegisterCommunication>

3.7.3 InterruptCommunication

DESCRIPTION

It has the following objects and/or attributes:

• ConnectionSet (mandatory): refer to ConnectionSet.

• name (mandatory; type string): the name of this object.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 43 of 58

EXAMPLE

<InterruptCommunication name="Interrupt_00">

 <ConnectionSet>

 <Connection from="SHIMEDITOR25331849408820141005130142974"

to="SHIMEDITOR31113490118120141005130142974">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Connection>

 </ConnectionSet>

</InterruptCommunication>

3.7.4 SharedMemoryCommunication

DESCRIPTION

It has the following objects and/or attributes:

• ConnectionSet (mandatory): refer to ConnectionSet.

• name (mandatory; type string): the name of this object.

• operationType (optional; type OperationType): the type of this shared memory communication.

• dataSize (optional; type int): the data size of this SharedMemoryCommunication.

• dataSizeUnit (mandatory; type SizeUnitType): the unit of dataSize of this shared memory.

• addressSpaceRef (optional; type IDREF): specifies the id of AddressSpace that the shared memory this

object uses. If this attribute is not declared and the subsequent subSpaceRef is not declared, then it means the

SharedMemoryCommunication mechanism is valid for all AddressSpace and SubSpace.

• subSpaceRef (optional; type IDREF) specifies the id of SubSpace that this SharedMemoryCommunication

supports. When this attribute is declared, the corresponding addressSpaceRef must also be declared as above.

When this attribute is omitted and addressSpaceRef is declared, it means the SharedMemoryCommunication

mechanism is valid for all SubSpace for the declared AddressSpace. When addressSpaceRef is omitted but

subSpaceRef is declared, the interpretation is undefined and must not be used.

EXAMPLE

<SharedMemoryCommunication dataSize="128" dataSizeUnit="KiB"

addressSpaceRef="SHIMEDITOR22375265206920141005130143354"

subSpaceRef="SHIMEDITOR9140938132320141005130143355" name="shmem_00">

 <ConnectionSet>

 <Connection from="SHIMEDITOR25331849408820141005130142974"

to="SHIMEDITOR31113490118120141005130142974">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Connection>

 ...

 </ConnectionSet>

</SharedMemoryCommunication>

3.7.5 EventCommunication

DESCRIPTION

This object describes an event-based communication. It has the following objects and/or attributes:

• ConnectionSet (mandatory;): refer to ConnectionSet.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 44 of 58

• name (mandatory; type string): the name of this object.

EXAMPLE

<EventCommunication name="Event_00">

 <ConnectionSet>

 <Connection from="SHIMEDITOR25331849408820141005130142974"

to="SHIMEDITOR31113490118120141005130142974">

 <Performance>

 <Pitch best="10.0" typical="10.0" worst="10.0"/>

 <Latency best="10.0" typical="10.0" worst="10.0"/>

 </Performance>

 </Connection>

 ...

 </ConnectionSet>

</EventCommunication>

3.7.6 ConnectionSet

DESCRIPTION

It has the following objects and/or attributes:

• Connection (mandatory): refer to Connection.

EXAMPLE

See examples in various communication objects.

3.7.7 Connection

DESCRIPTION

It has the following objects and/or attributes:

• Performance (optional): refer to Performance.

• from (mandatory; type IDREF): the id of MasterComponent that forms the initiator of connection.

• to (mandatory; type IDREF): the id of MasterComponent that forms the terminal of connection.

EXAMPLE

See examples in various communication objects.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 45 of 58

4. Use Cases

These use cases are provided as examples to see how to use the information that SHIM XML contains. The

categories of tools mentioned are to exemplify and to help the user to understand the concepts. This may also

apply to other types of tools.

4.1 Performance Estimation: Auto-Parallelizing Compiler

Table 5. Performance Estimation Use case

Illustrated tool (ID) Auto-parallelizing compiler (APC1)

Applicability Any tool that can benefit from knowing the performance characteristics of multi-

many-core hardware

SHIM elements

illustrated

ClockFrequency, MasterComponent, CommonInstructionSet, Latency, Pitch,

Cache, FIFOCommunication

Tool processing

overview

The compiler takes C sequential code and outputs parallelized C source code at the

thread level. The input code is analyzed first to determine what instructions it would

consist of, the collection of memory size it uses, the access type (rwx and access

width), the control flow and overall data flow. Based on the flow analysis, the code

is split into multiple threads to match the number of cores available, so that each

thread consumes approximately the same amount of cycles. The data placement is

optimized based on the available cache size per core, the latency of memory access,

and the inter-core communication latency.

4.1.1 Using “CommonInstructionSet”

• Each “MasterComponent” (such as a processor core) has a “ClockFrequency” and

“CommonInstructionSet”

• “CommonInstructionSet” is defined as LLVM IR instructions

• “CommonInstructionSet” has performance (processor cycles) of each instruction, expressed in best,

typical, and worst cycles

• The clock value and the cycle information can be used to estimate the execution time of specific

instructions on the hardware

4.1.2 Using “PerformanceSet”

• For memory operation for data read/write, or load/store instructions, performance values are calculated

using Latency and Pitch of a particular SubSpace where the data resides

• Latency/Pitch has best/typical/worst cycles. The typical value is normally used, however, if the tool is

capable of understanding repetitive memory access, the best value is used

• Based on the memory performance characteristics and the data usage, the compiler selects the best

memory to locate the data

4.1.3 Using “Cache”

• First, the tool reads Cache::cacheCoherency to determine whether hardware cache coherency is

supported. If not supported, a software-based coherency operation is inserted where necessary, while

mapping data/threads to cores so that such operations are minimized

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 46 of 58

• Cache::blockSize is the cache line size – this information is used by the tool to optimize the data

placement

• Cache::size is the cache size used by the tool to judge the optimal work data unit size

4.1.4 Using “FIFOCommunication”

• All CommunicationSet elements, including this FIFOCommunication, have ConnectionSet containing

Connection(s) describing which pair of MasterComponents are connected via this communication feature

• FIFOCommunication has dataSize and queueSize which are used by the tool to determine the unit of data

transferred

• All XXXCommunication have Performance, which contains Latency and Pitch expressed in cycles. This

can be used by the tool to determine the execution cost of transferring data via this communication

channel

4.2 Tool Configuration - RTOS Configuration Tool

Table 6. Tool Configuration Use case

Illustrated tool (ID) A configuration tool for a runtime software such as RTOS or middleware (RTS1)

Applicability This model can be utilized to generate a runtime software specific configuration

file. It is also applicable to other host tools that require configuration.

SHIM elements

illustrated

ClockFrequency, SlaveComponent, SubSpace, MasterSlaveBinding, Common

Configuration File (CCF)

Tool processing

overview

An RTOS has a configurator that generates RTOS configuration C source code,

which is later compiled and linked with the RTOS libraries. The configurator has a

GUI, which allows a user to select/specify the PU clock to set by RTOS boot code,

the memory address and size for the RTOS memory pool.

4.2.1 Using “ClockFrequency”

• Each “MasterComponent” (such as a processor core) has a “ClockFrequency”

• The value attribute can contain an XPath expression, which points to a separate, Common Configuration

File (CCF), another XML file used to express configuration parameters.

• In this scenario, the selectable values are listed in the part of the CCF, and it has “formType” called

“select”.

• The configurator reads the CCF and when it reads off the formType, it dynamically displays a combo-box

GUI control object with the selectable values listed.

• The text label of the GUI can be obtained from the “name” attribute of the ClockFrequency, and the

parent text label can be in the MasterComponent name it is tied to.

• These names can be used as the base of C #define symbol name in the generated C source code.

• Therefore the tool does not need to know it is configuring the clock frequency, but still serves the

purpose.

Note: Other configurable elements can be handled in the same way, or the tool can deliberately look for a specific

element and use the value.

4.2.2 Using “SubSpace”

• The configurator allows setting of RTOS memory pool base address and size

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 47 of 58

• It needs to know what memory is available, its address and size

• The tool first checks all “SlaveComponents” in the “ComponentSet” and checks the attribute “RWType”

being “rw” and record the name of the SlaveComponent

• Then it digs in “SubSpace” under “AddressSpace” and checks “MasterSlaveBinding” tied to the SubSpace

• MasterSlaveBinding contains “SlaveComponentRef” attribute and the tool must determine if it matches

the name recorded

• Once the matching SubSpace is found, the name, start, end (addresses) should display to user the

available memory area

4.3 Hardware Modeling

This use case uses the same SHIM classes described in Performance estimation - auto-parallelizing compiler, so

the actual steps of accessing the SHIM objects are omitted. Table 7 provides the basic idea.

Table 7. Hardware Modeling Use Case

Illustrated tool (ID) Quick and simple hardware modeling tool (HM1)

Applicability This model can be applied to any tool that provides virtual hardware functionality. If

such tools can import a SHIM XML, the modeling functionality itself may evolve to

offer more sophisticated features

SHIM elements

illustrated

ComponentSet, Latency/Pitch, and other components mentioned in Performance

estimation - auto-parallelizing compiler

Tool processing

overview

The tool can take a starting SHIM XML describing a multicore hardware. A

performance analysis tool can take a SHIM XML and a set of software. Using the

similar processing described in APC1, it can make a rough ‘static’ performance

analysis of the software on the given SHIM XML. The hardware modeling tool can

manipulate “ComponentSet”, such as adding a processor core with a specific

performance or change memory “latency/pitch”. The modified SHIM XML can be

served as the input again to the static performance analysis tool to see the change of

performance for the new hardware model.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 48 of 58

5. SHIM XML Authoring Rules and Guidelines

This section defines rules and guidelines for authoring (creating) a new SHIM XML file. The rules are the ones

that are mandated to follow, while guidelines are recommendations. The following sections state either [Rules] or

[Guidelines].

The software tools that consume SHIM XML will expect the SHIM XML files to follow the rules (and hopefully

the guidelines). One may choose to not to follow the guidelines, but it is the responsibility of the SHIM XML

provider to ensure that the expected use case and tools consuming the SHIM XML file do not face any issues by

not following particular items in the guidelines.

5.1 File Name [Rule]

The SHIM Editor does not create the SHIM XML file name automatically for you – you must specify the

appropriate name. The file name should describe what the specific SHIM XML is about. In most cases, a SHIM

XML should describe some hardware board, which may or may not contain multiple chips and memory. The file

name should describe the outermost hardware entity – so if it is a hardware board, it should describe the name of

the board, or a unique name that characterizes the hardware board. If the SHIM XML is not an actual board, but

instead a virtual hardware platform, use the name of the particular virtual platform instance.

In addition to the name of a hardware entity (or virtual platform), it needs to have a version information in the file

name. Note that even if you use some RCS, when you export the SHIM XML file out to someone that does not

have access to the RCS repository, then add a version information to avoid confusion. The version information can

be any alphanumerical strings, as long as it is unique over different versions of that particular SHIM XML file.

Examples would be the revision of the file from the RCS, modification date in yyyy-mm-dd format, or your own

versioning scheme.

Another element worth mentioning is the compiler used to measure the performance, especially if there is a

multiple choice of compilers supported for the processor architectures implemented in the hardware. The file name

shall also carry the version and revision information of the compiler. If the hardware described by SHIM contains

multiple ISA and if multiple compilers are used, the compilerName and compilerVersion shall denote those of

SDK/tool-chain that integrates or packages these multiple tools.

The file name must be unique and the best way to do this is to use the internet domain name, in the manner Java

uses to name its packages
4
. Combined with what is described above, the template for the SHIM XML file name is

as below:

For example, if the ABC evaluation board version 1.0.0 manufactured by XYZ Ltd, whose internet domain name

is www.xyz.com and the compiler used to measure the performance is gcc 4.9.0, then the SHIM XML file name

should be

com.xyz.abcEvalBoard.1_0_0.gcc.4_9_0.xml

If the name of the hardware platform is too vague, it is advisable to extend the platform name part with some other

sub-name, like the name of the multi-many-core processor integrated, to make the name more distinguishable.

Also, the hardware platform name shall be extended to contain any other platform-specific information that further

sub-categorizes the particular SHIM XML file. This is sometimes favorable in a case where the hardware platform

4
 http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

domainName.hardwarePlatformName.platformVersion.compilerName.compilerVersion.xml

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 49 of 58

has multiple operation modes, and if you choose to create multiple SHIM XML files to describe this. Another

option is to use CCF to use a single SHIM XML file to be configurable, but that will require one to write a CCF

and a CCF-compatible SHIM XML. There are pros and cons of doing either, so it is at your discretion which

model you would employ. The rule of thumb would be to use CCF if you have a stable SHIM XML file and you

are about to create similar but another SHIM XML file, and you know that there will be more, and these SHIM

XML files are expected to be reused with multiple minor modification, then it should be more efficient to adapt

CCF model.

5.2 Naming of Various Objects [Rule]

All the SHIM objects will have names that must be unique when expressed as an absolute XML path. It is just as

in the file systems – different directories can have files with the same names, as long as the directory names are

different. This means you can have MasterComponent with the same names, as long as the ComponentSet names

are different.

Consistency is another thing to consider regarding naming of objects. This is nothing special to SHIM,

nevertheless it is critical to maintain consistent naming within a SHIM XML. If you are authoring multiple SHIM

XML, these should also be consistent. The SHIM specification does not require object names to serve any purpose

other than distinguishing one from another. However, in some situations the names can be effective in conveying

important information that the SHIM standard itself does not define (this could be included in a future version of

SHIM). In the meantime, the consistent naming may serve the gap. Also, consistency is critical when a SHIM

XML, or a part of, is reused. When SHIM supports Componentization of SHIM XML, then the consistency should

greatly ease adopting the new specification.

5.3 Level of Detail and Precision [Guideline]

In principle, all the hardware properties that can be expressed in SHIM should be described. It is also advisable to

match the names of components to the names given in the hardware manual, if such already exists.

Note: omitting a description of any hardware properties does not necessarily lead to the software tools being non-

functional. The tools treat a SHIM XML file as-is, and are unable to determine if the description has been omitted,

as long as the SHIM XML describes a functional hardware. So it is at the discretion of the SHIM XML author for

what to expose or not, for example.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 50 of 58

6. Common Configuration File (CCF)

This chapter describes the Common Configuration File (CCF) which provides a powerful and flexible mechanism

to describe configurable hardware (and software) elements. CCF allows reuse of the same SHIM XML for

different hardware configurations and also provides consistent configuration interface. It can also be used to

describe vendor-specific features, such as providing some special operation mode not supported by the SHIM

XML schema that, when enabled, changes the performance which is described in the SHIM XML.

Though it is strongly recommended to support CCF, it is optional and a software tool can still use SHIM without

supporting CCF. If CCF is not included, its basic capability is fixed to the default configuration written in the

SHIM XML. Note a SHIM XML will not reference the CCF in anyway – only vice versa (CCF XML references a

SHIM XML file).

6.1 Concept

6.1.1 Multiple Hardware Configuration

A hardware platform often has multiple configurations (e.g., the system or processor clock frequency, a

configurable cache size, the size of FIFO, some operation mode). SHIM tries to generalize the hardware model

where possible so that we have a single interface for different hardware. However, there are still some generic

items that are often configurable, such as clock frequency. If SHIM does not have the capability to express this

configurable clock frequency, then one must create separate SHIM XML files differing only in the

ClockFrequency.

The CCF describes the configurable items in a file called CCF XML (a separate XML file from the SHIM XML).

Software tools using SHIM can utilize this mechanism to provide a Configuration tool user interface within its tool

or as a separate standalone tool. When the configuration tool is executed, along with the SHIM XML and CCF, it

provides a mechanism to modify the specific parts of SHIM XML, according to the inputs made by the tool user,

which can also be automated by the tool. Altogether, this will relieve the SHIM XML authors from writing similar

SHIM XML files, differing only in the values of configurable items, while also helping software tool developers to

develop configuration user interface.

6.1.2 Vendor-Specific Hardware Features Affecting SHIM Objects

It is not possible to include in a SHIM XML any hardware mechanisms that are not defined in the schema. The use

of such features often results in different hardware performance. Since SHIM describes the performance properties

in terms of processor, memory, and communication, this inability to describe such mechanisms can lead to

inaccurate performance estimations beyond SHIM’s targeted 20% error rate. CCF can be used to describe such

vendor-specific hardware features and provide software tools the configuration interface for those features. The

SHIM XML author can describe in a CCF a way to modify SHIM XML according to the configuration tool user

input. The configuration interface is dynamically created from the CCF, so the software tools need not be aware of

the vendor-specific features, while allowing the hardware vendors to describe such features. The SHIM XML is

modified according to the CCF and the tools then use the resulting SHIM XML.

6.1.3 Configuration Tool User Interface

Often software tools must provide a user interface (UI), whether graphical or not; however, there is usually support

for both interfaces. Commercial tools must support a wide variety of platforms so that it can achieve a critical

mass of users required to fuel the continuous evolution of their technology and business. This is especially true in

the embedded systems market, which has an incredibly wide range of hardware, and also a wide range of COTS

software components. Therefore, it is critical to derive ways to effectively and economically support these

configuration requirements by the tools. CCF is intended to provide a standard way to achieve this.

The nature of the problem of providing a user interface for all such variations is that the actual configuration items

are specific to whatever entity that it configures. There are some common items, but often they differ in the subset

and sometimes they are interleaved. If a tool takes an approach of coding the configuration interface for each

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 51 of 58

specific variable entity, it can be quite costly (e.g., the configuration management cost, distribution of the

software, quality maintenance issues).

The key to mitigating such issues is to bind the UI design description with the specific configuration item

description, and use the same algorithm and also the code that interprets the combined description, and create the

UI dynamically. This approach has already been quite popular and well-proven. The problem is that there is no

standard for describing this, and even if two tools use the same configurable entities, each must create similar, but

different, descriptions since it is not standardized. CCF is meant to remedy the situation.

CCF defines six types of configuration input interface objects: select, bool, text, integer, hex_integer, and

expression (described later). The tool developer must determine what kind of UI controls it maps the configuration

input interface objects to, but the select is intended as a combo box, text is a text field, integer is an integer field,

and so on. These controls can be grouped in any combination and are also capable of switching a sub-set of

configuration items, depending upon an input on the particular configuration item (often residing at a higher level

of configuration items). Most of these control objects, or Form-Type, as named in CCF, are simple to use, and,

when used in combination, can describe most configuration items needed. Sometimes, a configuration item may

depend on the values of other multiple configuration items, so it is necessary to express the relationship in some

arithmetic or logical way. Finally, expression is a special object that is a pseudo-interface object which serves as a

bucket to contain various XPath expression string objects. Since XPath allows the tool to describe basic arithmetic

operations, it can be used to calculate a value that is dependent on the values of other configuration items. Along

with the Form-type supported, including the capability to describe arithmetic operations with XPath, and the

capability to group configuration items and describe them hierarchically, CCF provides a simple yet powerful way

to cover most or all of the configuration interface and description needs.

6.2 Interface

6.2.1 XML Schema

The CCF class diagram is shown in Figure 9. Common Configuration File (CCF) class diagram.

Figure 9. Common Configuration File (CCF) class diagram

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 52 of 58

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Configuration" type="Configuration"/>

 <xs:complexType name="Configuration">

 <xs:sequence>

 <xs:element name="Item" type="Item" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Expression" type="Expression" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" use="optional" type="xs:string"/>

 <xs:attribute name="formType" use="required" type="FormType"/>

 <xs:attribute name="min" use="optional" type="xs:int"/>

 <xs:attribute name="max" use="optional" type="xs:int"/>

 <xs:attribute name="path" use="optional" type="xs:string"/>

 <xs:attribute name="uri" use="optional" type="xs:string"/>

 </xs:complexType>

 <xs:element name="Item" type="Item"/>

 <xs:complexType name="Item">

 <xs:sequence>

 <xs:element name="Configuration" type="Configuration" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="key" use="optional" type="xs:string"/>

 <xs:attribute name="value" use="required" type="xs:string"/>

 </xs:complexType>

 <xs:simpleType name="FormType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="select"/>

 <xs:enumeration value="bool"/>

 <xs:enumeration value="text"/>

 <xs:enumeration value="integer"/>

 <xs:enumeration value="float"/>

 <xs:enumeration value="hex_integer"/>

 <xs:enumeration value="expression"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="ConfigurationSet" type="ConfigurationSet"/>

 <xs:complexType name="ConfigurationSet">

 <xs:sequence>

 <xs:element name="Configuration" type="Configuration" minOccurs="1"

maxOccurs="unbounded"/>

 <xs:element name="DefineSet" type="DefineSet" minOccurs="0" maxOccurs="1"/>

 <xs:element name="ConfigurationSet" type="ConfigurationSet" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="name" use="required" type="xs:string"/>

 </xs:complexType>

 <xs:element name="Expression" type="Expression"/>

 <xs:complexType name="Expression">

 <xs:sequence>

 <xs:element name="description" type="xs:string" minOccurs="1" maxOccurs="1"/>

 <xs:element name="Exp" type="xs:string" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="DefineSet" type="DefineSet"/>

 <xs:complexType name="DefineSet">

 <xs:sequence>

 <xs:element name="Def" type="Def" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Def" type="Def"/>

 <xs:complexType name="Def">

 <xs:sequence/>

 <xs:attribute name="name" use="required" type="xs:string"/>

 <xs:attribute name="path" use="required" type="xs:string"/>

 <xs:attribute name="uri" use="required" type="xs:string"/>

 </xs:complexType>

</xs:schema>

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 53 of 58

6.2.2 Semantics

ConfigurationSet is the topmost object, which includes at least one Configuration object that indicates which

FormType it uses. For select FormType, multiple Item objects are listed that comprise the entries in the combo box

control. The key attribute is used as the text to display for the entry, where the value is the actual configuration

value. The value itself is often self-explanatory, and the key and value are the same. The name attribute of the

parent Configuration object can be used as the label for the control. If a FormType of Configuration object is an

integer, then the min and max attributes define the minimum and maximum values that users can input,

respectively. The ConfigurationSet object can nest itself, forming a hierarchical configuration item tree. Also, an

Item object can have another Configuration object underneath, which is useful when FormType is select and if you

need a particular set of configuration only when the user selects a specific Item. This hierarchical model can be

used to group a particular set of configuration items that tools can use to group configuration UI controls

accordingly.

If FormType of Configuration object is expression, then an Expression object is defined that has Exp attribute,

which is literally the XPath expression to use. The XPath allows the CCF to perform basic calculations, taking

some values of another XML as parameters. The ConfigurationSet object can contain another object called

DefineSet (this is similar to #define in C language). In the XPath expression, one often references the value of the

particular configuration item. Def object, which hangs onto the DefineSet, can be used in the XPath expression in a

short text string. The shorter string can be used in the Exp attributes and also path attributes of Configuration

objects that share the same parent ConfigurationSet object.

All Configuration objects have “path” and “uri” attributes that specify where the result of each formType is

targeted. The path is an XPath expression and uri is the location of the target XML file. It is the CCF author’s

responsibility to match the type of formType and the target XPath expression. The configuration tool also uses the

path and uri to obtain the default configuration values by reading the current values from the target XML.

Therefore, when the configuration tool starts up, the input fields are initialized with values read from the target

XML, specified by path and uri.

The expression formType usually takes one or more values from some XML file (usually SHIM XML). These

values, however, may also be modified by other Configuration objects in the same CCF. Therefore, it is important

how Configuration objects are processed. The CCF must be processed top-down, and CCF must be authored

assuming this order of processing.

6.2.3 FormType

DESCRIPTION

This is enumeration (constants) of CCF form type.

• select is of the combo box form type.

• bool is of checkbox form type.

• text is of text field form type.

• integer is of integer (decimal) form type.

• float is of float (floating decimal) form type.

• hex_integer is of integer (hex) form type.

• expression is of Expression form type. See Expression.

6.2.4 ConfigurationSet

DESCRIPTION

It has the following objects and/or attributes:

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 54 of 58

• ConfigurationSet (optional).

• Configuration (mandatory): refer to Configuration.

• name (mandatory; type string): the name of this object.

6.2.5 Configuration

DESCRIPTION

It has the following objects and/or attributes:

• Item (optional): refer to Item.

• Expression (optional): refer to Expression.

• name (mandatory; type string): the name of this object.

• formType (mandatory; type FormType) specifies the type of form this configuration object use.

• min (optional; type int): the minimum value of this configuration, when formType is integer or hex_integer.

• max (optional; type int): the maximum value of this configuration, when formType is integer or hex_integer.

• path (optional; type string): the XPath expression describing the destination of resulting configuration

according to formType.

• uri (optional; type string): the XML file that path is applied.

6.2.6 Item

DESCRIPTION

It has the following objects and/or attributes:

• Configuration (optional): refer to Configuration.

• key (mandatory; type string): the name of this configuration item.

• value (mandatory; type string): the value of this configuration item.

6.2.7 Expression

DESCRIPTION

It has the following objects and/or attributes:

• description (mandatory; type string): the description of this expression.

• Exp (mandatory): refer to Exp.

DESCRIPTION

It has the following objects and/or attributes:

• Def (mandatory;): refer to Def.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 55 of 58

6.2.8 Def

DESCRIPTION

It has the following objects and/or attributes:

• name (mandatory; type string): the name of this object.

• path (mandatory; type string): the XPath expression that maps to name.

• uri (optional; type string): the XML file that path is applied.

6.3 Examples

6.3.1 Generic

<?xml version="1.0" encoding="UTF-8"?>

<ConfigurationSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="CCF Sample for

SHIM" xsi:noNamespaceSchemaLocation="ccf-schema.xsd">

 <DefineSet>

 <Def name="@sclock" path="/SystemConfiguration/ClockFrequency/@clockValue"

uri="shim_sample_data.xml"/>

 <Def name="@cashSize" path="//Cache[@name='UnifiedCache_0_0_0']/@size"

uri="shim_sample_data.xml"/>

 </DefineSet>

 <Configuration formType="select" name="System clockValue-Select"

path="/SystemConfiguration/ClockFrequency/@clockValue" uri="shim_sample_data.xml">

 <Item key="value" value="20.0"/>

 <Item key="value" value="40.0"/>

 <Item key="value" value="100.0"/>

 </Configuration>

 <Configuration formType="expression" name="Sample Expression"

path="//MasterComponent/ClockFrequency/@clockValue" uri="shim_sample_data.xml">

 <Expression>

 <description>description</description>

 <Exp>@sclock * 2</Exp>

 </Expression>

 </Configuration>

 <Configuration formType="text" name="Arch" path="//MasterComponent/@arch"

uri="shim_sample_data.xml"/>

 <Configuration formType="integer" name="nRegister"

path="//SharedRegisterCommunication/@nRegister" uri="shim_sample_data.xml"/>

 <Configuration formType="float" name="ClockFrequency:clockValue"

path="/SystemConfiguration/ClockFrequency/@clockValue" uri="shim_sample_data.xml"/>

 <Configuration formType="bool" name="BooleValue Sample"/>

</ConfigurationSet>

6.3.2 Nested configuration

This example shows a nested configuration. Based on the selection of the system clock frequency, different

choices for processor clock frequency (MasterComponent) are displayed and configured.

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 56 of 58

<?xml version="1.0" encoding="UTF-8"?>

<ConfigurationSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="CCF Sample for

SHIM" xsi:noNamespaceSchemaLocation="ccf-schema.xsd">

 <DefineSet>

 <Def name="@sclock" path="/SystemConfiguration/ClockFrequency/@clockValue"

uri="datas/shim_sample_data.xml"/>

 <Def name="@cashSize" path="//Cache[@name='UnifiedCache_0_0_0']/@size"

uri="datas/shim_sample_data.xml"/>

 </DefineSet>

 <Configuration formType="select" name="System clockValue-Select"

path="/SystemConfiguration/ClockFrequency/@clockValue" uri="datas/shim_sample_data.xml">

 <Item key="value" value="20.0">

 <Configuration formType="select" name="Processor clockValue-Select"

path="//MasterComponent/ClockFrequency/@clockValue" uri="datas/shim_sample_data.xml">

 <Item key="value" value="20.0"/>

 <Item key="value" value="40.0"/>

 <Item key="value" value="60.0"/>

 </Configuration>

 </Item>

 <Item key="value" value="40.0"/>

 <Configuration formType="select" name="Processor clockValue-Select"

path="//MasterComponent/ClockFrequency/@clockValue" uri="datas/shim_sample_data.xml">

 <Item key="value" value="40.0"/>

 <Item key="value" value="80.0"/>

 <Item key="value" value="100.0"/>

 </Configuration>

 <Item key="value" value="100.0"/>

 <Configuration formType="select" name="Processor clockValue-Select"

path="//MasterComponent/ClockFrequency/@clockValue" uri="datas/shim_sample_data.xml">

 <Item key="value" value="100.0"/>

 <Item key="value" value="200.0"/>

 <Item key="value" value="300.0"/>

 </Configuration>

 </Configuration>

</ConfigurationSet>

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 57 of 58

7. FAQ

Q: Why is the SHIM working group using an XML schema to describe the multicore and many-core architectures

and devices?

A: We have selected to use an XML schema because you can use the technology called XML data binding. It

allows you to generate a class library for handling the SHIM XML data as data objects, not as XML elements and

attributes. For example, you can create a C++ or Java object called MasterComponent from a SHIM XML and

access the attributes of the MasterComponent element just like you would reference/retrieve a member variable of

the C++/Java object. There are many popular open source implementations of XML data binding tools. Without

the data binding technology, you can still access the SHIM XML via legacy XML libraries of SAX/DOM.

Essentially, you read the XML as a file and iterate over each XML element and attribute, however, this is quite

tedious programming and your code becomes dependent on the given XML structure and will not be portable

should it change. With the XML data binding, when we update the SHIM spec, there is a high probability that the

legacy tools code will still operate as is. Also refer to SHIM Concepts, XML.

Q: What is the difference between SHIM and IP-XACT?

A: IP-XACT is basically a 'design' language, primarily focusing on a description of how hardware IP components

are electronically tied together. On the other hand, SHIM is a 'descriptive' language, primarily focusing on only the

hardware property descriptions that matter to the software development tools. Hence, SHIM does not describe the

type of interconnect or bus in any direct way. However, it does describe the master/slave IP components and slave

components in a hierarchical manner, but there are no specifics regarding how these are connected together (e.g.,

whether it is a traditional bus, a cross-bar, or NoC). In SHIM, the IP components are listed mostly for describing

memory access properties such as latency, any master-to-master communication like FIFO register, and also for

basic processor properties such as clock, instruction set (ABI), cache size and type - which all matters to software

tools to estimate the configuration. Also refer to possible alignment with IP-XACT in Componentization of SHIM

XML.

Q: How does the OpenMPI HWloc compare to SHIM?

A: HWloc
5
 is a little similar to SHIM where it deals with the static chip IP organization. However, there are some

major differences. One of the major differences seems to be that HWloc depends on information provided by the

OS through its interfaces at runtime, and providing that information through the standard API defined by hwloc.

SHIM is intended to be used primarily without running the system - its information is used to construct the OS

configuration, by which itself is used to create the information hwloc obtains through the OS interfaces. So it does

not focus on the standard description of hardware from a software perspective, but standardizing the run-time API

for retrieving the hw topology. Unlike SHIM, HWloc doesn't appear to handle hardware performance metrics

information. The hwloc seems to focus on the hw topology so that the application using the hwloc library can use

the provided information to bind a thread/process to a particular core, for example. This is indeed one possible use

case of SHIM.xml but instead we are focusing on tool use cases, such as performance estimation, tool

configuration, and hardware modeling. The hwloc seems to have the ability to describe a virtual hardware by using

commands or texts, but the capability seems limited. Having said this, SHIM specification is defined by its XML

schema, and through a schema compiler, it can generate C/C++ libraries also. With the help of a host of tools, it

should not be difficult to provide a compact implementation of such library without requiring the XML parser and

file system to store the SHIM XML file, enabling use of SHIM from the target runtime system. Aligning with hwloc,

without mentioning how, is certainly a possibility, too.

5
 http://www.open-mpi.org/projects/hwloc/

http://www.open-mpi.org/projects/hwloc/

 SHIM Specification V1.00

The Multicore Association January 15, 2015 Page 58 of 58

8. Appendix A: Acknowledgements

The SHIM working group would like to acknowledge the significant contributions of the following people in the

creation of this specification:

Working Group

Fumio Arakawa, Nagoya University

Sven Brehmer, PolyCore Software

Masato Edahiro, Nagoya University

Hiroshi Fujimoto, Nagoya University

Masaki Gondo, eSOL (chair)

Masamichi Izumda, TOPS Systems

Hiroyuki Kondo, Renesas Electronics

Markus Levy, Multicore Association (president)

Yukoh Matsumoto, TOPS Systems

Hitoshi Suzuki, Renesas Electronics

The SHIM working group also would like to thank the external reviewers who provided input and helped us to

improve the specification. Below is a partial list of the external reviewers (others preferred to remain anonymous).

External Reviewers

Sunita Chandrasekaran, University of Houston

Paul Chen, Wind River

Dr. Satyadhyan Chickerur, B V Bhoomaraddi College of Engineering and Technology

Dr. Michael Deubzer, Timing-Architects

Badrinath Dorairajan, Microchip Technology

Jos van Eijndhoven, Vector Fabrics

Erik Fischer, Augment!IT

Dr.-Ing. Jens Gladigau, Robert Bosch GmbH

Christian Helm, Timing-Architects

Mark Honman, Sundance Multiprocessor Technology

Razvan Ionescu, Freescale

Andrei Kovalev, Freescale

Francois Legal, Assystem

Kenn Luecke, Boeing

Maxine Pelcat, INSA - Département EII

